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HOW FAST ARE NONSYMMETRIC MATRIX ITERATIONS?*

NOeL M. NACHTIGAL’, SATISH C. REDDY:I:, AND LLOYD N. TREFETHEN

Abstract. Three leading iterative methods for the solution of nonsymmetric systems of linear equations
are CGN (the conjugate gradient iteration applied to the normal equations), GMRES (residual minimization
in a Krylov space ), and CGS (a biorthogonalization algorithm adapted from the biconjugate gradient iteration).
Do these methods differ fundamentally in capabilities? If so, which is best under which circumstances? The
existing literature, in relying mainly on empirical studies, has failed to confront these questions systematically.
In this paper it is shown that the convergence ofCGN is governed by singular values and that ofGMRES and
CGS by eigenvalues or pseudo-eigenvalues. The three methods are found to be fundamentally different, and to
substantiate this conclusion, examples of matrices are presented for which each iteration outperforms the others
by a factor of size O(V) or O(N) where N is the matrix dimension. Finally, it is shown that the performance
of iterative methods for a particular matrix cannot be predicted from the properties of its symmetric part.

Key words, iterative method, conjugate gradient iteration, normal equations, Krylov space, pseudospectrum,
CGN, GMRES, BCG, CGS
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1. Introduction. More than a dozen parameter-free iterative methods have been
proposed for solving nonsymmetric systems of linear equations

1.1 Ax b, A E(INN.
A rough list is given in Table 1, and for a more detailed classification we recommend

], [6 ], and [12 ]. In this paper we concentrate on the three methods that we believe
are the most important: CGN, GMRES, and CGS. Quickly summarized, CGN is a name
for the conjugate gradient iteration applied to the normal equations; this idea can be
implemented in various ways, of which the most robust in the presence of rounding
errors may be the program LSQR [18]. GMRES is the most robust of the Krylov space
orthogonalization and residual minimization methods. CGS is a modification of BCG,
the biconjugate gradient iteration, that appears to outperform BCG consistently. To the
best of our knowledge none of the other iterations proposed to date significantly out-
perform CGN, GMRES, and CGS.

This leaves us with the questions: do CGN, GMRES, and CGS themselves differ
significantly in capabilities? Ifso, which ofthem is best for which matrices? In the literature,
these questions have for the most part been approached empirically by case studies of
"real world" matrices and preconditioners. However, although such case studies are
indispensable as proofs of feasibility, the answers they provide are not very sharp or
general. We believe that the experimental approach is an inefficient route to the under-
standing of fundamental properties of algorithms and a poor basis for predicting the
results of future computations.

In this paper we attempt a more systematic assessment of the convergence of non-
symmetric matrix iterations. The first half ofthe paper deals with generalities, presenting
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TABLE
Iterative methodsfor nonsymmetric systems Ax b. (The differences

among these algorithms are slight in some cases.) The terminology ap-
proximatelyfollows Elman [6] and Gutknecht [12]. References not listed
can befound in those two papers and in [21].

I. Methods based on the normal equations

CGN CGNR
CGNE
LSQR

Hestenes and Stiefel ’52 14]
Craig’55
Paige and Saunders ’82 [18]

II. Orthogonalization methods

GCG

ORTHOMIN
ORTHORES
ORTHODIR
FOM
GCR
GMRES

Concus and Golub ’76, Widlund ’78
Axelsson ’79, ’80
Vinsome ’76
Young and Jea ’80
Young and Jea ’80
Saad ’81
Elman ’82 [6], Eisenstat et al. ’83 [5]
Saad and Schultz ’86 [23]

III. Biorthogonalization methods

BIOMIN BCG
BIORES BO
BIODIR
BIOMIN CGS
BIORES
BIODIR
BiCGSTAB
QMR

Lanczos ’52 [16], Fletcher ’76 [8]
Lanczos ’50, Jea and Young ’83
Jea and Young ’83
Sonneveld ’89 [25]
Gutknecht ’90 12]
Gutknecht ’90 12]
Van der Vorst ’90 [30]
Freund ’90 [9], [10]

IV. Other methods

USYMLQ
USYMQR

Saunders, Simon, and Yip ’88 [24]
Saunders, Simon, and Yip ’88 [24]

various results concerning the matrix properties that control the convergence of CGN
( 2), GMRES ( 3), and CGS ( 4). In particular, we show that the convergence of
CGN depends on the singular values of A, whereas the convergence of GMRES and
CGS depends on its eigenvalues (ifA is close to normal) or pseudo-eigenvalues (ifA is
far from normal). Many of the results we present are already known, especially those
connected with CGN, but the fundamental distinction between the roles of eigenvalues
and singular values seems to be often overlooked.

These general considerations lead to the conclusion that CGN, GMRES, and CGS
indeed differ fundamentally in capabilities. In 5 we substantiate this claim by constructing
simple, artificial examples which show that in certain circumstances each of these three
iterations outperforms the others by a factor on the order of f or N or more. We
emphasize that these examples are in no way intended to be representative of realistic
computations. They are offered entirely for the insight they provide.

Section 6 discusses the relationship between convergence rates and the properties
of the symmetric part of a matrix, or as we prefer to think of it, the field of values. Using
the examples of 5 for illustration, we argue that a well-behaved symmetric part is neither
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necessary nor sufficient for rapid convergence, and that therefore, considering the sym-
metric part is not a reliable way to analyze iterative methods.

Our discussion of all of these iterations is intentionally simplified. We largely ignore
many important issues such as sparsity and other structure, machine architecture, round-
ing errors, storage limitations, the effect of truncation or restarts, and the possibility of
hybrid Krylov space iterations, which in some cases may be the fastest of all [17]. Most
important, we ignore the issue of preconditioning, without which all of these methods
are often useless (see Example R, below). For a broader view of matrix iterations the
reader should consult references such as 13 ], 21 ], and 22 ]. For an empirical comparison
of CGN, GMRES, and CGS, see [19].

Throughout the paper we use the following standard notation:
Z-norm,

N dimension ofA,
A spectrum ofA,
E set of singular values ofA,
A * conjugate transpose ofA,
x0 initial guess,
x nth iterate,
e A-b x nth error,
r b Ax Ae nth residual.

For any set S
_
C and function f(z) defined on S we shall also find it convenient

to write

f s sup If(z)[.
zS

CGN, GMRES, and CGS can each be described in a few lines of pseudocodeor pro-
grammed in a few lines of Matlab. The formulas are given in Fig. 1.

2. CGN. Perhaps the most obvious nonsymmetric iterative method is the appli-
cation of the conjugate gradient iteration to the normal equations

(2.1) A*Ax=A*b,

an idea that dates to the original CG paper by Hestenes and Stiefel [14 ]. (Of course,
A *A is never formed explicitly.) This algorithm, which we shall call CGN, constructs
the unique sequence of vectors

(2.2) x,xo + (A *ro, (A *A )A *ro, (A *A )"- ’A *ro )
with minimal residual at each step:

(2.3) r, minimum.

A statement equivalent to (2.3) is the orthogonality condition

(2.4) rn .1_ (AA *r0, AA * )Zr0, AA * nro )
The beauty of this algorithm is that thanks to the CG connection, x can be found by a
three-term recurrence relation. For details, see [6].

Though algorithms of the normal equations type are usually based on (2.1), an alternative (often called
Craig’s method) is the sequence AA*y b, x A*y. There is no universal agreement on names for these
algorithms, but the most common choices are CGNR and CGNE, respect.ively. In this paper we use the neutral
term CGN in place of CGNR, since except for a few details, most of what we say applies to CGNE as well.
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CGN
/o:= 0;po:= 0
Forn:= 1,2,...

p,:= A*rn- + 13- 1P,-

an:-IIA*r.-111Z/llAp.
Xn := Xn- + OtnPn
rn ".= rn anAPn
/3.:= IlA*r, ll2/llA*r,_ 1112

GMRES
Vl := ro/ll roll; el (1,0, 0,... )r
Forn:= 1,2,

Forj:= 1,...,n
hjn := VJ’AVn

).+ := AI)n Zj= hjnl)

h.+ 1,.:-- II.+ 111
v.+ f.+ 1/h.+ ,..
y. := least-squares solution to H.y. el I]roll
Xn:= Xo + Ej= (Yn)jV

CGS
q0 := P0 :- 0; o0 := 1, 0 r0 or some other choice
Forn:= 1,2,

p.:= r._
fin := Pn/Pn-
Un := rn Jr- nqn
P. := Un + n(qn- + .P.-
Vn := APn
O’n Vn
On ;’- On/fin
qn := Un OlnVn
r,:= r,-i- a,A(u, + q,)
Xn :-- Xn- + Oln(Un + qn)

FIG. 1. CGN, GMRES, and CGS. Each iteration begins with an initial guess Xo and initial residual ro
b Axo. See 23 ]for details ofmore efficient implementations ofGMRES and 18 ]for the LSQR implementation
ofCGN.

To investigate convergence rates we note that at each step we have

(2.5) x. Xo + q.- (A *A )A *ro
for some polynomial q._ of degree n 1. Subtracting this equation from the exact
solution A -1 b gives

(2.6) e.=p.(A*A)eo

for some polynomial p.(z) zq._(z) of degree n with p.(O) 1. Since r. Ae.
and Ap.(A *A p.(AA * )A, multiplying (2.6) by A gives

(2.7) r. p.(AA * )ro

for the same polynomial p.(z). We conclude that convergence will be rapid if and only
ifpolynomials p. exist for which ]]p.(AA *)roll decreases rapidly, and a sufficient condition
for this is that IIp.(AA * )II should decrease rapidly. Exact convergence in exact arithmetic
occurs in at most n steps ifthe degree ofthe minimal polynomial ofAA * is n. Convergence
to a tolerance e occurs ifAA * has a "pseudominimal polynomial" p. with p.(0) and
[[p,,(AA *)1[ _-< e.
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At this point singular values enter into the picture. Since AA * is a normal matrix
with spectrum ), we have

(2.8) ]]p.(AA * )1] lip.

for any polynomial p, where we have defined ]]p.]] SUpz ]p(z)] as mentioned
in the Introduction. In other words, the rate of convergence of CGN is determined by
the real approximation problem of minimizing []p.]]2 subject to p.(0) 1. We have
proved the following theorem.

THEOREM 1. For the CGN iteration applied to an arbitrary matrix A,

(2.9)
r, _< inf p,

p(0)

Greenbaum has shown that for each n, there exists an initial residual r0 such that equality
in (2.9) is attained 11 ]. Thus this theorem describes the upper envelope ofthe convergence
curves coesponding to all possible initial guesses for the CGN iteration applied to a
fixed matrix A and fight-hand side b. Pagicular initial guesses make obseed convergence
curves lie below the envelope, but the improvement is rarely dramatic.

We emphasize that the convergence ofCGN is determined solely by the singular
values ofA. Any two matrices with the same singular values have identical worst-case
convergence rates.2 IfA is normal, the moduli ofthe eigenvalues are equal to the singular
values, but the arguments of the eigenvalues are irrelevant to convergence. If A is not
normal, convergence rates cannot be determined from eigenvalues alone.

One choice ofa polynomial p, in (2.9) is the Chebyshev polynomial T, transplanted
to the interval [in,x and normalized by p,(0) 1, where min and ffmax denote
the extreme singular values of A. Elementaff estimates lead from here to the famil-
iar corolla

]]r]] <2(- 1)(2.10) []01[ K+

where K O’max/O’mi is the condition number ofA. Thus, loosely speaking, CGN converges
in at most O(r) iterations. Unlike (2.9), however, this inequality is far from sharp in
general, unless the singular values ofA are smoothly distributed.

Another choice ofPn is a product of two polynomials p and pn_ of lower degree.
Together with Greenbaum’s sharp form of Theorem 1, this yields another corollary of
Theorem 1:

for any k =< n. To put it in words: the envelope described by (2.9) is concave downwards,
so the convergence ofCGN tends to accelerate in the course of the iteration.

The convergence of CGN is strictly monotonic:

(2.12) IIr +,ll

In fact the determining effect of the singular values applies to all initial vectors, not just to the worst case;
see the penultimate paragraph of 3.
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One of the many ways to prove this is to note that for sufficiently small e, I- eAA * <
see 6 ). Equation 2.12 follows since Pn / (z) must be at least as good as the product

ofpn(z) and the monomial ez.
The results of this section are essentially all known. In particular, theorems related

to (2.11 can be found in 28 ].

3. GMRES. Residual minimization methods minimize the residual in a simpler
Krylov space at the price of more arithmetic. They construct the unique sequence
{x } with

(3.1) x,xo + ( ro,Aro,
satisfying

(3.2) r, minimum.

An equivalent statement is the orthogonality condition

(3.3) rn _k (Aro,A Zro, ,A nro ).
This condition is implemented by "brute force" in the sense that at the nth step, linear
combinations of n vectors are manipulated. The GMRES iteration is a robust imple-
mentation of (3.1)-( 3.3 by means of an Arnoldi construction of an orthonormal basis
for the Krylov space, which leads to an (n + X n Hessenberg least-squares problem
[23]. At each step we have

(3.4) e,=p,(A)eo, rn=p,(A)ro,

where p(z) is a polynomial of degree n with p(0) 1. Convergence will be rapid if and
only if polynomials p, exist for which I[p(A)ro[[ decreases rapidly, and a sufficient con-
dition for this is that
occurs in n steps if there exists a polynomial p with pn(0) and I[p,(A)I1 --< e.

These formulas lead us to look at eigenvalues rather than singular values. IfA is a
normal matrix with spectrum A, then for any polynomial p,

(3.5)

From this we obtain the following analogue of Theorem 1.
THEOREM 2. For the GMRES iteration applied to a normal matrix A,

3.6

pn(0)

As in Theorem 1, we expect that this bound will be reasonably sharp in practice, though
it is not known that equality need be attained for any r0. Thus if A is normal, the con-
vergence ofGMRES is determined by the eigenvalues ofA via the complex approximation
problem of minimizing [[Pn[[A subject to p(0) 1. Complex approximation problems
are harder than real ones, and no convergence bound as memorable as (2.10) results.
Equation (2.11 ), on the other hand, carries over to this case without modification.

Unfortunately, nonsymmetric matrices are rarely normal. Two methods of analysis
of the convergence of GMRES for general matrices have been proposed. The first, the
standard approach in the literature, is basedon the assumption that A is not too far from
normal. For any matrix A that can be diagonalized as A VAV-, the natural gener-
alization of (2.8) is

3.7 P, A ----< P, (A) _-< K( V p, A.
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Combining (3.4) and (3.7) gives the following theorem.
THFOEM 3. For the GMRES iteration applied to a diagonalizable matrix A,

(3.8)
[[r" [1-< (V)inf

p.(0)

where ( V) is the condition number ofany matrix ofeigenvectors ofA.
This theorem indicates that if (V) is not too large, it is still a reasonable approxi-

mation to say that the convergence of GMRES is determined by the eigenvalues ofA.
The second approach is motivated by matrices for which (V) is huge or infinite,

that is, matrices whose eigenvalues are highly sensitive to small peurbations in the
matrix entries. Let h h denote the e-pseudospectrum of A, i.e., its set of e-pseudo-
eigenvalues: those points z
e or, equivalently, those points z e C with (zI- A)- e -1. Let L be the arc length
of the boundaff 0A. By a contour integral we can readily show that

(3.9) l[p,l[ < l[p,(A)[l <
L

for any e > 0 26 ]. This inequality leads to the following theorem.
THEOREM 4. For the GMRES iteration applied to an arbitrary matrix A,

3.10

p,(0)

for any e > O.
Loosely speaking, ifA is far from normal, then the convergence ofGMRES depends

on polynomial approximation problems defined on the pseudospectra, not just the spec-
trum. See [17], [26], and [27] for examples and fuher discussion of this phe-
nomenon.

The convergence ofGMRES, unlike CGN, is not always strictly monotonic; we can
have r, + r, [. A necessaff and sufficient condition for strict monotonicity at eve
step n (and for all ro) is that the field of values ofA should lie in an open half-plane with
respect to the origin. This half-plane condition is discussed fuher in 6.

Neither Theorem 3 nor Theorem 4 is sha, nor necessarily close to sha even for
worst-case initial residuals r0. To the best ofour knowledge the convergence ofGMRES,
unlike that ofCGN, cannot be reduced completely to a problem in approximation theoff.

It is readily shown that ifA and A are unitafily similar, then their behaviors under
GMRES are identical in the sense that there exists a bijection ro f0 on Cu such that
the convergence curve for A with initial vector r0 is the same as the convergence curve
forA with initial vector f0. The analogous statement for CGN would be that the behaviors
of A and A under CGN are identical in the same sense if AA * and AA* are unitafily
similar, which is equivalent to A and A having the same singular values. See the remarks
following Theorem in 2.

We cannot complete a discussion of GMRES without mentioning the impoant
point that in practice, residual minimization methods are usually not applied in the
"pure" form described above. To keep storage requirements under control, GMRES is
often restaed after each k steps for some integer k (e.g., 5 or 10 or 20), and ORTHOMIN
is generally truncated in a different but analogous way so that the algorithm works always
with a k-dimensional Kfflov substance. Besides the desire to keep the discussion simple,
we have avoided mentioning this issue because we believe that restaaing or truncating
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these iterations is not an entirely satisfactory idea, since the resulting algorithms tend to
spend a great deal of time relearning information obtained in previous cycles. For a
discussion of this point, see [17 ], where we advocate the use of hybrid methods instead.

4. BCG and CGS. The BCG, or biconjugate gradient iteration, constructs non-
optimal approximations in the same Krylov subspace as GMRES, but with less work
per step [8], [16]. Thus, like GMRES, BCG constructs a sequence of vectors

(4.1) x,6xo+ro,Aro,
which implies

(4.2) en=pn(A)eo, rn=pn(A)ro

for some polynomial pn of degree n. The difference is that instead of (3.3), p is now
determined by the orthogonality condition

(4.3) rn_L 0,A*0, ,(A*)"-

where Y0 CU is a vector often taken equal to r0. Since GMRES is optimal in the sense
of (3.2), BCG can never outperform it if one measures performance by the number of
iterations required to reduce [Ir, by a certain amount. However, BCG computes its
choice ofxn by three-term recurrence relations. Consequently the nth step ofBCG requires
O( vector operations rather than the O(n) vector operations required by GMRES,
making it potentially much faster in total work. Equally important, the amount ofstorage
required does not grow with n.

CGS, which stands for "CG squared," is a modification of BCG due to Sonneveld
[25 ]. Sonneveld’s observation is that by reorganizing the BCG algorithm in a certain
way one can replace (4.2) by

(4.4) en=pZ(A)eo, r,=pZ(A)ro

for the same polynomial pn, with no increase in the amount ofwork per step. Furthermore,
whereas BCG (like CGN) requires vector multiplications by both A and A *, which may
be awkward for certain sparse data structures or parallel machines, or may be impossible
when matrix-free algorithms are in use, CGS only requires multiplications by A.

We will not give further details ofthese algorithms or much information about their
convergence properties, which are less well understood than for CGN and GMRES. For
discussion of these matters, including remarkable connections with orthogonal polyno-
mials, continued fractions, Pad6 approximation, and the qd algorithm, see [2], [12 ],
[20], and [29]. The following remarks, most ofwhich can be derived from the description
above, will suffice.

First, thanks to (4.4), CGS typically converges (or diverges) faster than BCG by a
factor of between and 2.

Second, except for that factor of 2, CGS can outperform GMRES in total work but
not in number of iterations. In fact, at each step we obviously have that

(4.5) r ?RES =< r

if all three methods begin with the same r0, regardless of the choice of o.
Third, for a symmetric matrix and Y0 ro, BCG reduces to the CG iteration [8].
Finally, far from converging monotonically, BCG and CGS are susceptible to the

possibility of breakdown--division by zero--if on- 0 or , 0 at some step (see Fig.
). Breakdown will not occur in the genetic case, but numerical analysts are well trained

to expect that where infinities may arise with probability zero, numbers large enough to
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be troublesome in floating-point arithmetic are likely to appear more often than that.
Moreover, as our example S below will show, the mere requirement that ro and 0 be
real is enough to guarantee breakdown in certain cases. In the face of such reasonable
grounds for suspicion, it is remarkable how frequently BCG and CGS turn out to be
effective.

Various results are known about conditions under which BCG and CGS break down
or converge exactly, assuming exact arithmetic 20 ], 12 ]. For example, it can be shown
that ifGMRES obtains the exact solution at a certain step n, then BCG and CGS do the
same if they do not break down [20]. Unfortunately, much less is known about what
matters in practice: approximate breakdown and approximate convergence.

5. Eight examples. So much for the generalities. Now back to the original questions:
how different are CGN, GMRES, and CGS, and when? What convergence curves--
log [Irn as a function of n--are possible?

To show that none of these algorithms is dispensable, three examples would suiflce.
As our goal has been to learn as much as possible in the process, however, we have
actually constructed 23 8 examples in an attempt to nail down the space of matrices
at every corner. Table 2 summarizes these examples by listing numbers of iterations--
not work estimates. For CGN and CGS the two are proportional, but for GMRES the
work per step increases linearly with the number of iterations if the matrix is sparse, and
so does the storage. Thus if a sparse matrix requires O(V) iterations for both GMRES
and CGS, CGS is the winner in both work and storage by a factor O().

GMRES and CGS construct iterates in essentially the same Krylov space and are
relatively hard to distinguish. Therefore, we begin the discussion with the first four ex-
amples in the table, for which these two behave comparably. With each example we
present a computed convergence curve corresponding to dimension N 40, except in
two cases with N 400, and a random real initial vector x0 and fight-hand side b with
independent normally distributed elements ofmean 0 and variance 1. Bigger dimensions
do not change the curves significantly. For CGS we take 0 r0, except in Example B+.

To fully explain these experiments we mention that the curves plotted below represent
actual residuals, not residual estimates computed by the iterative algorithm; as it happens,
in these examples it makes little difference. Plots of errors rather than residuals also look
qualitatively similar for these examples.

Example I: all methods good Fig. 2). By Theorem l, CGN converges in one step
(for all initial data) if and only if all the singular values of A are equal, that is, if and

TABLE 2
Numbers ofiterations requiredfor convergence to afixedprecisionfor our eight

example matrices for worst-case initial residuals. denotes divergence.

Name of matrix CGN GMRES CGS

I all methods good
R N N N all methods bad

C N N CGN wins
BI N 2 2 CGN loses

D N 2 /N CGS wins
S 2 * CGS loses

B+ N 2 * GMRES wins
B, 2 2N N GMRES loses
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-10

GMRES
CGN

CGS

N=40

0 10 20 30 40 50

FIG. 2. Example I (identity). All three iterations converge in one step.

only if A is a multiple of an orthogonal matrix. By a slight extension of Theorem 3,
GMRES converges in one step (and CGS also, by the remark at the end of 4) if and
only ifA is diagonalizable and all its eigenvalues are equal, that is, if and only ifA is a
multiple of the identity. Since the identity is orthogonal, the latter condition implies the
former, and these conditions are simultaneously satisfied if and only if A is a scalar
multiple ofthe identity. Thus up to a scale factor there is a unique matrix that is handled
perfectly by CGN, GMRES, and CGS: A I.

Example R: all methods bad (Fig. 3). The opposite extreme would be a matrix for
which all three iterations made no progress whatever until step N. By (2.12) no such
example exists, but we can easily find a matrix for which all three algorithms make negli-
gible progress until step N. By Theorems and 2 any normal matrix with suitably trou-
blesome eigenvalues and singular values will suffice, such as A diag 1, 4, 9, N2).
For a more interesting example, consider a random matrix R of dimension N. To be
precise (although the details are not very important), let the elements ofR be independent
normally distributed random numbers with mean 0 and variance 1. Such a matrix has
condition number O(N) on average and smoothly distributed singular values [4], so by

lglO rll

-lO

N=40

10 20 30 40 50

FIG. 3. Example R (random). All three iterations require N steps.
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Theorem 1, CGN will require N steps for convergence. The eigenvalues are approximately
uniformly distributed in a disk of radius about the origin, suggesting that GMRES
and CGS will also require N steps. In other words, no known iterative method solves
random matrix problems in better than O(N) iterations. (It would certainly be startling
if this were not true, since such an iteration would beat Gaussian elimination on average
even in the absence of preconditioning.) These predictions are confirmed by the exper-
iment presented in Fig. 3. Note that the CGS convergence curve is wiggly, while the other
two are monotonic, and that only GMRES exhibits the convergence in Nsteps that would
be achieved by all three methods in exact arithmetic.

Example C: CGN wins (Fig. 4). Suppose we want a matrix for which
CGN converges in one step but GMRES and CGS make no progress at all (for
worst-case initial data) until step N. As mentioned above, the first requirement will be
met if and only if A is a multiple of an orthogonal matrix. For the second, we must
have ro rl rv_ l, or by (3.3) and (4.3), ro +/- (Aro, A 2r0, AN- ro and
r0 +/- (?0, A *?0, (A * )u- 20). These conditions are simultaneously satisfied for suitable
ro if A is a multiple of an orthogonal matrix with minimal polynomial zN, such as
the circulant matrix

0 1
0 1

(5.1) C= 0 1 (NN).
0 1

1 0

It is obvious why this matrix is indigestible by GMRES and CGS: C represents a circulant
shift upwards by one position, while C- is a circulant shift downwards. It takes N-
shifts in one direction to approximate a single shift in the other direction, and thus Krylov
spaces provide very poor approximations. This example has been mentioned before by
Brown [3], van der Vorst [29], and undoubtedly others.

Example B: CGN loses (Fig. 5). Now we want to reverse the pattern of the last
example. As mentioned above, convergence in one step of GMRES and CGS implies
that the matrix has just a single nondefective eigenvalue, hence is a multiple of the
identity, entailing convergence in one step of CGN also. Thus a perfect example in this
category cannot exist. However, a nearly perfect example can be found if we settle for

GMRES

CGN

N=40

n
-10

0 10 20 30 40 50

FIG. 4. Example C circulant shift). CGN converges in one step, but GMRES and CGS require N steps.
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GMRES
,,CGS

N=40

CGN

-10
0 10 20 30 40 50

FIG. 5. Example B (block-diagonal matrix with eigenvalue ). CGN requires N stepsfor convergence, but
GMRES and CGS converge in two steps.

convergence in two steps of GMRES and CGS. Thus we need a matrix whose minimal
polynomial has degree 2 but which is ill-conditioned, with singular values spread over a
wide range. Such an example is the block-diagonal matrix

ml

(5.2) B1 M3 (N N),
,o

MN/2

with

j-l) <j<N/2.(5.3) 34 0

Obviously the minimal polynomial has degree 2, while the varying values ofj ensure a
troublesome distribution of singular values in the range approximately [2/N, N/2 ].
Incidentally, the diagonal elements ofM might just as well have been taken to be any
two numbers a and/3 of the same sign, so long as they remain the same in every block.

The four examples above show that CGN is sometimes better than GMRES and
CGS by a factor O(N) and sometimes worse by the same factor. This leaves us with the
problem of distinguishing GMRES and CGS, which calls for examples of a different
style. To make CGS look worse than GMRES, we construct examples in which CGS
breaks down, at least for worst-case initial data. To make CGS look better than GMRES,
we construct sparse examples in which both iterations take O(V) steps, implying that
the work and storage estimates for GMRES are O(/) times larger. Alternatively,
O(V) may be replaced by a constant and these examples may be interpreted as showing
that CGS may outperform GMRES by an arbitrary factor.

Example D: CGS wins (Fig. 6). For an example in this category it suffices to pick
any diagonal matrix with condition number K O(N) and smoothly distributed positive
entries. BCG then behaves exactly like CG, requiting O(V) iterations, since the co;dition
number is O(N), and GMRES behaves almost the same but not identically since it is
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minimizing a different norm. CGS does better by at most a factor of 2. CGN, however,
squares the condition number and requires O(N) steps.

For a particularly clean version of this idea, define

(5.4) D diag (x ,X2, ,XN),

where { xa. } denotes the set of Chebyshev extreme points scaled to the interval [1, K] for
some g > 1,

(5.5) yj cos
(j- )
N-’-’ xJ= +-(yj+ 1)(g- 1), <-j<-N.

Then we expect steady convergence of GMRES at the rate indicated by (2.10) with
replaced by f, and convergence of CGS at about twice this rate. If we set

(5.6) (f-- ) 21/- ( -+- el/21/- 2

=e, i.e.,=/- -t- el/-7U)
then GMRES and CGS will converge to accuracy e in about2and 11 steps, respec-
tively. Confirming this prediction, Fig. 6 shows the results of an experiment with e

10 -l and dimension N 400 rather than the usual N 40.
Example S: CGS loses (Fig. 7). Let S be the skew-symmetric matrix

(5.7) S @IN/2,
-1 0

that is, an N N block-diagonal matrix with 2 2 blocks. This matrix is normal and
has eigenvalues +i and singular value 1. Therefore, by Theorems and 2, CGN converges
in one step and GMRES in two steps, as shown in Fig. 7. On the other hand, CGS
encounters a division by zero at the first step for any real initial vector r0, assuming
o ro. If o is chosen at random, the zero denominator is avoided genetically and
convergence is achieved in practice, but the expected result of that division remains
infinite.

An analogous example, though essentially of dimension 4 rather than 2, has been
discussed by Joubert [15].

10

CGN

GMRES

10 20 30
-10 d0 50o

FIG. 6. Example D (diagonal matrix with condition number N). The dimension is N 400. CGS requires
f- steps for convergence, while CGN and GMRES require O(N) and 21/ steps, respectively--hence a total
work estimate in both cases comparable to O(N) steps ofCGS.
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CGS N=40

GMRES

N
n

-10
0 10 20 30 40 50

FIG. 7. Example S (skew-symmetric). CGS breaks down at thefirst step, while CGN andGMRES converge
in one and two steps, respectively.

Example B+I: GMRES wins (Fig. 8). For this example we want a matrix like that
of Fig. 5, except for which CGS breaks down. This is easily accomplished by defining a
matrix B+I by (5.2) but with (5.3) replaced by

<=j<N/2(5.8) M 0 -As with the matrix S above, CGS will encounter a division by zero at the first step if ro
and ?o are chosen appropriately, and this is what we have done in Fig. 8. Genetically,
however, this example does not break down.

Example BK: GMRES loses (Fig. 9). For this final example it is natural to modify
the idea of matrices B and B+ again so that instead of fixed eigenvalues and varying
singular values, we have fixed singular values and varying eigenvalues. In particular, let
BK be defined as in (5.2) but with (5.3) replaced by

(5.9) M=( xj "’J) K
2 2/X)1/2 <=j<

0 K/xj
"YJ=( +I-x-K =N/2,

cs

o

-2

-4

-6

-8 GMRES

-10
10

CGN

N=40

FIG. 8. Example B+_ (block diagonal matrix with eigenvalues +1 ). To make CGS break down, ro and o
have been chosen diabolically.
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logol rll o

-2

.101
0 10 20 30 40

N=400

n

FIG. 9. Example BK (block-diagonal matrix with singular values 1, K ). As in Fig. 6, the dimension is N
400. CGN takes two steps for convergence, CGS takes f- steps, and GMRES takes 2V steps, for a total
GMRES work estimate comparable to O(N) steps ofCGS.

where { xj. } are again Chebyshev points scaled to the interval [1, K[ as in (5.5), but with
N replaced by N/2. It is readily verified that each block M has the same singular values
and K, whereas the eigenvalues lie throughout the interval [1, r]. Taking again N

400, e 10 -1, and r defined by (5.6) gives the results shown in Fig. 9.

6. Symmetric parts and half-plane conditions. In the literature on nonsymmetric
matrix iterations, much attention has been given to the behavior of the symmetric or
more properly Hermitian part of a matrix, defined by M 1/2 (A + A *). In particular,
Eisenstat, Elman, and Schultz 5 and Elman 6 show that ifM is positive definite, then
various truncated and restarted Krylov space iterations are guaranteed to converge with
a convergence rate bounded according to

[ )tmin(M)2 ]n/2(6 1)
Ilr, _<
]Jr011 a-a-i

where ffmax(A kmax(A *A)1/2 is the largest singular value ofA. Among other algorithms,
these results apply to GMRES (k) for any k >- 1, that is, GMRES restarted every k steps

Theorems ofthis kind can be made rotationally invariant by restating them in terms
of the field of values of a matrix, defined by W {x*Ax/x*x, x cN}. The real
part of W is equal to the interval [kmin(M), kmax(M)], and therefore the statement
that M is positive definite is equivalent to the statement that W lies in the open fight
half-plane. More generally, it is enough to assume that W lies in any open half-plane
{ z Re (e-iz) > 0 }. We call this assumption the half-plane condition; it is also some-
times said that A is definite. The basis of these convergence theorems is the observation
that the half-plane condition implies ee-iAl] < for all sufficiently small e > 0.
The mathematics involved is the same as in standard results in numerical analysis on
logarithmic norms, or in functional analysis, the Hille-Yosida theorem [27].

These theorems are important, but we believe they are oflimited utility for choosing
between iterative methods. The reason is that they are based on the relatively trivial case
in which k 1, analogous to a steepest-descent iteration; for k > 2 the half-plane condition
is sufficient but not necessary tbr convergence. This fact is well known in principle, but
nevertheless the opinion seems to have become widespread that the half-plane condition
is what matters in practice. See, for example, [7] and [24].
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To show that a well-behaved symmetric part is not necessary for rapid convergence
of GMRES, it is enough to look at the matrices S, B1, or B+l. For example, consider
B1. The field of values is the disk about z of radius N4, which implies Xmin(M)
N4, kmax(m) + N4. We could hardly be further from satisfying the half-plane

condition, but GMRES converges in two steps.
Conversely, (6.1) shows that a sufficiently well-behaved symmetric part guarantees

rapid convergence of GMRES. To show that mere positive definiteness of M is not
enough, however, consider a normal matrix along the lines of the matrix C of (5.1), but
with eigenvalues only at the roots of unity in the fight half-plane. Since the condition
number is 1, CGN converges in one step, whereas GMRES still requires many steps.

7. Conclusions and exhortation. Ofthe many parameter-free nonsymmetric matrix
iterations proposed to date, we believe that CGN, GMRES, and CGS are the best. So far
as we know, for calculations in exact arithmetic with performance measured by the
residual norm [Ir,[[, no other iteration ever outperforms these three by more than a
constant factor, except in certain examples involving special initial residuals r0.

The convergence ofCGN is determined by the singular values ofA; the eigenvalues
have nothing to do with it except insofar as they determine the singular values. If A is
normal or close to normal, the convergence ofGMRES is determined by the eigenvalues
of A; the singular values, and in particular the condition number, have nothing to do
with it. More precisely, by Theorems and 2, the convergence ofGMRES and CGN for
a normal matrix depends on how well 0 can be approximated on the spectrum A by
polynomials p(z) and p,(r2), respectively, with p,(0) and r Iz]. It follows that
we can expect CGN to be the winner ifthe singular values are clustered but the eigenvalues
tend to surround the origin, whereas GMRES will be the winner if the eigenvalues are
as tightly clustered as the singular values.

If A is far from normal, on the other hand, the convergence of GMRES becomes
slower by a potentially unbounded factor than eigenvalues alone would suggest. In some
such cases, the convergence is approximately determined by the pseudospectra of A
instead.

The above statements about GMRES apply also), approximately, to CGS, but the
convergence of CGS is affected additionally by instabilities that are not yet fully under-
stood. When matrix-vector multiplications are much more expensive than vector oper-
ations and storage, CGS can outperform GMRES by at most a factor of 2. When the
cost of vector operations and storage is significant, however, as is typical in sparse matrix
calculations, Examples D and B have established that CGS may outperform GMRES
by a factor of order f. Taken together, our examples show that CGN, GMRES, and
CGS each outperform the others in some cases by factors of order or N.

In summary, these three algorithms are genuinely distinct in their behavior. Until
something better comes along, there is a place for all of them in scientific computing.

Having confined the discussion to generalities and contrived examples throughout
the paper, we close with two editorial remarks of the more usual kind. First, we believe
CGN is underrated. Despite the squaring ofthe condition number, this algorithm some-
times outperforms the competition; too many authors dismiss it with a flurry ofrhetoric.
Second, CGS is a remarkable algorithm that deserves attention. It outperforms the more

The "squaring of the condition number" we refer to is the fact that 2; rather than 2; or A is what governs
the convergence of CGN in exact arithmetic (Theorem ). Whether rounding errors are amplified by a factor
on the order of the square of the condition number is quite a different matter and is not discussed here. With
the LSQR implementation, they need not be [18 ].
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familiar BCG frequently by a factor of to 2, and it converges in a number of iterations
as low as GMRES far more often than the available theory might suggest. Yet, despite
these impressive results, the convergence curves generated by CGS are frequently so
erratic that it is hard to imagine that this algorithm can be completely fight. We suspect
an even better algorithm may be waiting to be discovered.4

CGN, GMRES, and CGS are so easy to program that there is little excuse for not
taking the trouble to do so. We propose that until a fundamentally superior matrix
iteration is invented, researchers in this field adopt the policy that no plot ofconvergence
rates is complete unless it includes curves for CGN, GMRES, and CGS.
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