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TheTortoise and the Hare
Restart GMRES∗

Mark Embree†

Abstract. When solving large nonsymmetric systems of linear equations with the restarted GMRES
algorithm, one is inclined to select a relatively large restart parameter in the hope of mim-
icking the full GMRES process. Surprisingly, cases exist where small values of the restart
parameter yield convergence in fewer iterations than larger values. Here, two simple exam-
ples are presented where GMRES(1) converges exactly in three iterations, while GMRES(2)
stagnates. One of these examples reveals that GMRES(1) convergence can be extremely
sensitive to small changes in the initial residual.
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1. Introduction. GMRES is an iterative method for solving large nonsymmetric
systems of linear equations, Ax = b [8]. Throughout science and engineering, this
algorithm and its variants routinely solve problems with millions of degrees of freedom.
Its popularity is rooted in an optimality condition: at the kth iteration, GMRES
computes the solution estimate xk that minimizes the Euclidean norm of the residual
rk = b − Axk over a subspace of dimension k,

‖rk‖ = min
p∈Pk
p(0)=1

‖p(A)r0‖,(1.1)

where Pk denotes those polynomials with degree not exceeding k, and r0 = b−Ax0 is
the initial residual. As each iteration enlarges the minimizing subspace, the residual
norm decreases monotonically.

GMRES optimality comes at a cost, however, since each new iteration demands
both more arithmetic and memory than the one before it. A standard work-around
is to restart the process after some fixed number of iterations, m. The resulting
algorithm, GMRES(m), uses the approximate solution xm as the initial guess for a
new run of GMRES, continuing this process until convergence. The global optimality
of the original algorithm is lost, so although the residual norms remain monotonic,
the restarted process can stagnate with a nonzero residual, failing to ever converge [8].
Since GMRES(m) enforces local optimality on m-dimensional spaces, one anticipates
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that increasing m will yield convergence in fewer iterations. Many practical examples
confirm this intuition.

We denote the kth residual of GMRES(m) by r
(m)
k . To be precise, one cycle

between restarts of GMRES(m) is counted asm individual iterations. Conventionally,
then, one expects ‖r(m)

k ‖ ≤ ‖r(�)
k ‖ for � < m. Indeed, this must be true when k ≤ m.

Surprisingly, increasing the restart parameter sometimes leads to slower conver-
gence: ‖r(m)

k ‖ > ‖r(�)
k ‖ for � < m < k. The author encountered this phenomenon

while solving a discretized convection-diffusion equation described in [4]. In unpub-
lished experiments, de Sturler [1] and Walker and Watson [11] observed similar be-
havior arising in practical applications. One wonders, how much smaller than ‖r(m)

k ‖
might ‖r(�)

k ‖ be? The smallest possible cases compare GMRES(1) to GMRES(2) for
3-by-3 matrices. Eiermann, Ernst, and Schneider present such an example for which
‖r(1)

4 ‖/‖r(2)
4 ‖ = 0.2154 . . . [2, pp. 284–285]. Otherwise, the phenomenon we describe

has apparently received little attention in the literature.
The purpose of this article is twofold. First, we describe a pair of extreme ex-

amples where GMRES(1) converges exactly at the third iteration, while GMRES(2)
seems to never converge. The second example leads to our second point: small per-
turbations to the initial residual can dramatically alter the convergence behavior of
GMRES(1). These observations are based on careful calculations; the underlying
mechanism behind these results is yet to be rigorously understood. Hopefully this
note will spark further investigation of these curious issues.

2. First Example. Consider using restarted GMRES to solve Ax = b for

A =


 1 1 1

0 1 3
0 0 1


, b =


 2
−4
1


.(2.1)

Taking x0 = 0 yields the initial residual r0 = b. Using the fact that A and r0 are
real, we can derive explicit formulas for GMRES(1) and GMRES(2) directly from the
GMRES optimality condition (1.1). The recurrence for GMRES(1),

r
(1)
k+1 = r

(1)
k − r

(1)T
k Ar

(1)
k

r
(1)T
k ATAr

(1)
k

Ar
(1)
k ,(2.2)

was studied as early as the 1950s [3, sect. 71], [7]. For the A and r0 = b defined
in (2.1), this iteration converges exactly at the third step:

r
(1)
1 =


 3
−3
0


, r

(1)
2 =


 3

0
0


, r

(1)
3 =


 0

0
0


.

Expressions for one GMRES(2) cycle can likewise be derived using elementary calcu-

lus. The updated residual takes the form r
(2)
k+2 = p(A)r

(2)
k , where p(z) = 1+αz+βz2

is a quadratic whose coefficients α = α(A, r
(2)
k ) and β = β(A, r

(2)
k ) are given by

α =
(r

(2)T
k AAr

(2)
k )(r

(2)T
k ATAAr

(2)
k )− (r

(2)T
k Ar

(2)
k )(r

(2)T
k ATATAAr

(2)
k )

(r
(2)T
k ATAr

(2)
k )(r

(2)T
k ATATAAr

(2)
k )− (r

(2)T
k ATAAr

(2)
k )(r

(2)T
k ATAAr

(2)
k )

,

β =
(r

(2)T
k Ar

(2)
k )(r

(2)T
k ATAAr

(2)
k )− (r

(2)T
k AAr

(2)
k )(r

(2)T
k ATAr

(2)
k )

(r
(2)T
k ATAr

(2)
k )(r

(2)T
k ATATAAr

(2)
k )− (r

(2)T
k ATAAr

(2)
k )(r

(2)T
k ATAAr

(2)
k )

.
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Fig. 1 Convergence curves for GMRES(1) and GMRES(2) applied to (2.1) with x0 = 0.

Executing GMRES(2) on the matrix and right-hand side (2.1) reveals

r
(2)
1 =


 3
−3
0


, r

(2)
2 =

1

2


 3

0
3


, r

(2)
3 =

1

28


 24
−27
33


, r

(2)
4 =

1

122


 81
−108
162


.

The inferiority of GMRES(2) continues well beyond the fourth iteration. For example,

k ‖r(2)
k

‖/‖r0‖
5 0.376888290025532. . .
10 0.376502488858910. . .
15 0.376496927936533. . .
20 0.376496055944867. . .
25 0.376495995285626. . .
30 0.376495984909087. . .

The entire convergence curve for the first 30 iterations is shown in Figure 1, based on
performing GMRES(2) in exact arithmetic using Mathematica.

The particular value of b (and thus r0) studied above is exceptional, as it is
unusual for GMRES(1) to converge exactly in three iterations. Remarkably, though,
GMRES(1) maintains superiority over GMRES(2) for a wide range of initial residuals.
For this matrix A, GMRES(2) converges exactly in one cycle for any initial residual
with zero in the third component, so we restrict attention to residuals normalized to
the form r0 = (ξ, η, 1)T. Figure 2 indicates that GMRES(2) makes little progress for
most such residuals, while GMRES(1) converges to high accuracy for the vast major-
ity of these r0 values. The color in each plot reflects the magnitude of ‖r(m)

100 ‖/‖r0‖:
blue indicates satisfactory convergence, while red signals little progress in one hun-
dred iterations. (To ensure this data’s fidelity, we performed these computations in
both double and quadruple precision arithmetic; differences between the two were
negligible.)
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Fig. 2 Convergence of GMRES(1) (left) and GMRES(2) (right) for the matrix in (2.1) over a range
of initial residuals of the form r0 = (ξ, η, 1)T. The color indicates ‖r(m)

100 ‖/‖r0‖ on a loga-
rithmic scale: blue regions correspond to initial residuals that converge satisfactorily, while
the red regions show residuals that stagnate or converge very slowly.

To gain an appreciation for the dynamics behind Figure 2, we first examine the
action of a single GMRES(1) step. From (2.2) it is clear that GMRES(1) will com-
pletely stagnate only when rT

0 Ar0 = 0. For the matrix A specified in (2.1) and
r0 = (ξ, η, 1)T, this condition reduces to

ξ2 + ξη + η2 + ξ + 3η + 1 = 0,(2.3)

the equation for an oblique ellipse in the (ξ, η) plane.

Now writing r
(1)
k = (ξ, η, 1)T, consider the map r

(1)
k �→ s

(1)
k+1 that projects r

(1)
k+1

into the (ξ, η) plane,

s
(1)
k+1 = (r

(1)
k+1)

−1
3


 (r

(1)
k+1)1

(r
(1)
k+1)2


,

where (r
(1)
k+1)j denotes the jth entry of r

(1)
k+1, which itself is derived from r

(1)
k via (2.2).

For the present example, we have

s
(1)
k+1 =




−η3 − 4η2 + 3ξη + 9ξ − 4η − 1

η2 + ξη + ξ + 5η + 10

η3 + ξη2 − 3ξ2 + 2η2 − 2ξη − 3ξ + η − 3

η2 + ξη + ξ + 5η + 10


.(2.4)

We can classify the fixed points (ξ, η) satisfying (2.3) by investigating the Jacobian
of (2.4). One of its eigenvalues is always 1, while the other eigenvalue varies above and
below 1 in magnitude. In the left-hand plot of Figure 2, we show the stable portion
of the ellipse (2.3) in black and the unstable part in white.

We can similarly analyze GMRES(2). This iteration will never progress when, in
addition to the stagnation condition for GMRES(1), r0 also satisfies rT

0 AAr0 = 0.
For the present example, this requirement implies

ξ2 + 2ξη + η2 + 5ξ + 6η + 1 = 0,
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the equation for an oblique parabola. This curve intersects the ellipse (2.3) at two
points, drawn as dots in the right-hand plot of Figure 2, the only stagnating residuals
(ξ, η, 1)T for GMRES(2). We can analyze their stability as done above for GMRES(1).
The projected map for this iteration, r

(2)
k �→ s

(2)
k+2, takes the form

s
(2)
k+2 =




3

η2 − 3ξ + 4η + 9

−η − 4

η2 − 3ξ + 4η + 9


.(2.5)

Analyzing the Jacobian for this GMRES(2) map at the pair of fixed points, we find
one to be unstable (shown in black in the right-hand plot of Figure 2) while the
other is stable (shown in white). This stable fixed point is an attractor for stagnating
residuals.

We return briefly to the initial residual r0 = (2,−4, 1)T. After the first few itera-
tions, the angle between r

(2)
k and the fixed vector steadily converges to zero at the

rate 0.6452 . . . suggested by the Jacobian’s dominant eigenvalue. We conclude with
high confidence that GMRES(2) never converges for this initial residual. (If one cycle
of GMRES(m) produces a residual parallel to r0, then either r

(m)
m = r0 or r

(m)
m = 0.

Thus a residual can’t remain fixed in the finite (ξ, η) plane, but still converge to 0.)

3. Second Example. The matrix A in (2.1) is nondiagonalizable, and one might
be tempted to blame its surprising convergence behavior on this fact. To demonstrate
that nondiagonalizablity is not an essential requirement, we exhibit a diagonalizable
matrix with eigenvalues {1, 2, 3} for which restarted GMRES also produces extreme
behavior. Take

A =




1 2 −2
0 2 4

0 0 3


, b =


 3

1
1


,(3.1)

with x0 = 0. Again, we construct the first few residuals. For GMRES(1),

r
(1)
1 =


 2
−1
0


, r

(1)
2 =


 2

0
0


, r

(1)
3 =


 0

0
0


,

while GMRES(2) yields

r
(2)
1 =


 2
−1
0


, r

(2)
2 =


 1

0
−1


, r

(2)
3 =

1

17


 8

12
−8


, r

(2)
4 =

1

67


−12

12
−28


.

Figure 3 illustrates the convergence curve for 30 iterations, again computed using
exact arithmetic.

As with the first example, we investigate the performance of restarted GMRES
for a range of r0 = (ξ, η, 1)T, shown in Figure 4. GMRES(2) performs as before, mak-
ing little progress for virtually all the residuals shown; there are two fixed points, one
stable and the other not. The GMRES(1) phase plane, on the other hand, contains
fascinating structure. Whether the iteration converges or stagnates appears sensitively
dependent on the initial residual, highlighted in Figure 5. Red regions—indicating
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Fig. 3 Convergence curves for GMRES(1) and GMRES(2) applied to (3.1) with x0 = 0.

Fig. 4 Comparison of GMRES(1) (left) and GMRES(2) (right) as in Figure 2, but for the matrix
in (3.1). (Double and quadruple precision computations differ notably only at the boundaries
between convergence and stagnation.)

stagnation—are drawn towards the arc of stable fixed points (shown in black in Fig-
ure 4). The boundary between stagnating and converging residuals exhibits hallmark
fractal qualities, as one might establish by analyzing the projected GMRES(1) map

s
(1)
k+1 =




2η3 − ξη2 − 6ξη + 2η2 − 11ξ − η − 3

ξ2 − η2 + ξη − ξ + 2η − 10

4η3 − ξ2η − 4ξ2 − 8η2 − 8ξη + 8ξ + 7η − 12

−2ξ2 + 2η2 − 2ξη + 2ξ − 4η + 20


.
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Fig. 5 Close-up of the left-hand plot of Figure 4. The white curve denotes unstable fixed points of

the map s
(1)
k+1

.

4. Closing Remarks. Examples like (2.1) and (3.1) abound. We discovered these
by varying the three upper right entries of A and the first two components of b among
the integers from −5 to 5, while fixing all other entries. Even among such a restricted
set, numerous other examples exhibit similar behavior.

Our contrived examples are extreme models of a phenomenon experienced in
practical computations. For the convection-diffusion discretization described in [4],
GMRES(1) or GMRES(5) can outperform GMRES(20) on moderately refined grids.
The optimal choice of restart parameter depends on the problem. Since, on average,
one GMRES(�) iteration is cheaper than one GMRES(m) iteration when � < m [5, 6],
the potential advantage of smaller restarts is especially acute.

There is much still to understand about this unusual restarting behavior. How
common is sensitive dependence on r0, especially for larger values of the restart pa-
rameter? What characterizes susceptible matrices? One hopes an improved GMRES
convergence theory will identify better practical guidelines for choosing the restart
parameter. One also wonders if related algorithms, including GMRES restarted with
an augmented subspace [2] and BiCGSTAB(�) [9], exhibit similarly unusual behavior.
Such effects might also arise from automatic shift-selection strategies in the restarted
Arnoldi algorithm for calculating eigenvalues [10].

Note Added in Proof. Since submitting this work for publication, several other
interesting examples have emerged. The simplest one, which John Sabino and I have
studied, involves the matrix

A =

(
1 −2
0 1

)
.
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Consider the two sequences of vectors {pj}∞j=0 and {qj}∞j=0, where

pj =

(
(j + 1)/j

1

)
, qj =

(
(2j + 1)/(2j − 1)

1

)
.

These sequences interlace one another, yet if r0 = pj , GMRES(1) converges exactly
in j + 1 iterations, while one can prove that if r0 = qj , GMRES(1) must stagnate.
Even for this remarkably simple problem, one obtains a convergence phase plane with
striping roughly akin to Figure 5. GMRES stagnation for 2-by-2 matrices has been
studied in detail by Zavorin, O’Leary, and Elman [12].
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