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ANY NONINCREASING CONVERGENCE CURVE IS POSSIBLE
FOR GMRES*

ANNE GREENBAUM, VLASTIMIL PT/K$, AND ZDENtK STRAKO$

Abstract. Given a nonincreasing positive sequence f(0) >_ f(1) >_ _> f(n- 1) > 0, it is
shown that there exists an n by n matrix A and a vector r with IIrll f(0) such that f(k) Ilrkll,
k- 1,..., n- 1, where rk is the residual at step k of the GMRES algorithm applied to the linear
system Ax b, with initial residual r b- Ax. Moreover, the matrix A can be chosen to have
any desired eigenvalues.
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1. Introduction. The GMRES algorithm [2] is a popular iterative technique
for solving large sparse nonsymmetric (non-Hermitian) linear systems. Let A be an n
by n nonsingular matrix and b an n-dimensional vector (both may be complex). To
solve a linear system Ax b, given an initial guess x for the solution, the algorithm
constructs successive approximations xk, k 1, 2,..., from the affine spaces

(i) x + span{r, Ar,..., Ak-lr},

where r b-Ax is the initial residual. The approximations are chosen to minimize
the Euclidean norm of the residual vector r b- Ax, i.e.,

(2) Ilrkll min IIr ull
uEAKk(A,r)

where Kk(A, r) span{r,Ar,... ,Ak-ir} is the kth Krylov subspace generated
by A and r. We call AKk(A, r) the kth Krylov residual subspace.

In a previous paper [1] it was shown that any convergence curve that can be gener-
ated by the GMRES algorithm can be generated by the algorithm applied to a matrix
having any desired eigenvalues. This is in marked contrast to the situation for normal
matrices, where the eigenvalues of the matrix, together with the initial residual, com-
pletely determine the GMRES convergence curve. This dramatically illustrates the
fact that when highly nonnormal matrices are allowed, eigenvalue information alone
cannot guarantee fast convergence of GMRES.

The residual norms of successive GMRES approximations are nonincreasing since
the residuals are being minimized over a set of expanding subspaces. The ques-
tion arises, however, as to whether every nonincreasing sequence of residual norms
is possible for the GMRES algorithm applied to some linear system. The question
from [1] is extended in the following way: Given a nonincreasing positive sequence
f(0) _> f(1) _>... _> f(n- 1) > 0 and a set of nonzero complex numbers {A1,..., An},
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466 A. GREENBAUM, V. PT.K, AND Z. STRAKO

is there an n by n matrix A having eigenvMues /1,..., ,n and an initial residual
r with IIrll f(0), such that the GMRES algorithm applied to the linear system
Ax b, with initial residual r, generates approximations xk such that Ilrkl] f(k),
k 1,..., n- 1? In this paper we answer this question affirmatively and show how
to construct such a matrix and initial residual. The presented construction is very
simple; it is not derived from the considerations described in [1]. Moreover, for a
given convergence behavior, we characterize all the matrices and initial residuals for
which GMRES generates the prescribed sequence of residual norms.

Note that the assumption f(n- 1) > 0 means that the related GMRES procedure
does not converge to the exact solution until the step n and the dimensions of both
K(A, r) and AKn(A, r) are equal to n. Using that assumption will simplify the
notation; the modification of the results to the general case is straightforward.

Throughout the paper we assume exact arithmetic.

2. Constructing a problem with a given convergence curve and any
prescribed nonzero eigenvalues. In this section, we construct a matrix A and a
right-hand side b, solving the question formulated in the introduction without using
the results from [1].

We start with a simple analysis of some properties of the desired solution. Since
the residual vectors generated by the GMRES algorithm applied to a linear system
Ax b, with initial guess x, are completely determined by the matrix A and the
initial residual r, we can assume without loss of generality that the initial guess x
is zero and the right-hand side vector b is the initial residual. We will refer to this
procedure as GMRES (A, b). Suppose that A and b represent the unknown matrix
and right-hand side. Let Y; {wl,..., w} be an orthonormM basis for the Krylov
residual space AK,(A, b) such that span{w,...,wj} AKj(A,b), j 1,2,...,n,
and let W be the matrix with the orthonormal columns (wl,...,w). From the
minimization property (2) it is clear that b can be expanded as

n

j=l

where I(b, wJ}l V/llrJ-lll 2 IlrJll 2, r b, Ilrnll 0. Given a nonincreasing positive
sequence f(0) _> f(1) _>... _> f(n- 1) > 0, define f(n) =_ 0 and the differences g(k)
by

(4) g(k) v/(f(k 1))2 (f(k)) 2, k 1,..., n.

The conditions I[b[I f(0), [[rJ[I f(j), j 1,2,... ,n-1, will then be satisfied if the
coordinates of b in the basis )/Y are determined by the prescribed sequence of residual
norms,

(5) W*b=(g(1),...,g(n))T.
Let A {A1,A2,...,/}, Aj : 0, j 1,2,...,n, be a set of nonzero points in the
complex plane. Consider the monic polynomial

n--1

(6) zn E Ojzj (Z /l)(Z ,2)... (Z
j=0

Clearly, s0 -0.
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CONVERGENCE CURVES FOR GMRES 467

Construction of the matrix A and the right-hand side b is straightforward. The
idea is the following. Matrix A can be considered as a linear operator on the n-
dimensional Hilbert space Cn. We denote this operator by A; its matrix representation
in the standard basis (el,..., en) gives the desired matrix A:

Ae=A.
.A is uniquely determined by its values on any set of basis vectors.

Let ]? (v1,..., vn} be any orthonormal basis in Cn, and let V be the matrix
with the orthonormal columns (vl,..., vn). Let b satisfy

v*

(note that given any b with IIbll- f(0), V can be chosen or, alternatively, given V,
b can be chosen). Since g(n) is nonzero, the set of vectors B {b, vl,..., vn-} is
linearly independent and also forms a basis for Cn. Let B be the matrix with columns
(b, v,..., vn-1). Then the operator .A is simply determined by the equations

(8)

Ab d vl
Av v

.Avn_ cob + Oil vl -- -- on-1vn-1Its matrix representation in the basis B is

(9) As
0 0 a0
1 0 al

1 OZn_

which is the companion matrix corresponding to the set of eigenvalues A. Finally, the
matrix A is given by

(10) A Ae BABB-1.

Summarizing, we have proved the following theorem.
THEOREM 2.1. Given a nonincreasing positive sequence f(O) >_ f(1) _> _>

f(n- 1) > 0 and a set of nonzero complex numbers {A1,A2,...,An}, there exists
a matrix A with eigenvalues i1,i2,..., ikn and a right-hand side b with IIb[I f(O)
such that the residual vectors r at each step of GMRES (A, b) satisfy IIrll f(k),
k 1,2,...,n- 1.

It is obvious that the whole subject can be formulated in terms of linear operators
and operator equations on a finite-dimensional Hilbert space.

For any chosen orthonormal basis l?, the matrix A and the right-hand side b can
be constructed via (6), (9), (10) and (4), (7).

3. Characterization of all the matrices and right-hand sides for which
GMRES generates the prescribed sequence of residual norms. In [1] it was
shown that many different matrices can generate the same Krylov residual spaces.
We start with a slightly generalized formulation of the theorem from [1].
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468 A. GREENBAUM, V. PT.K, AND Z. STRAKO

THEOREM 3.1. Let E1 C E2 C C En be a sequence of subspaces of Cn,
where Ej is of dimension j, j 1,2,...,n, and let b be any n-dimensional vec-
tor. By 14; {wl,...,wn} we denote an orthonormal basis of En such that span
{wl,..., wj} Ej, j 1,2,... ,n and by W we denote the matrix with orthonormal
columns (w,..., wn). Let 4 be any nonsingular linear operator on En represented by
its matrix A in the standard basis , A 4. Then AKj(A, b) Ej, j 1, 2,..., n,
if and only if (b, wn} 0 and the operator ,4 has in the basis 14; matrix

A R[-I,

where R is any nonsingular upper triangular matrix and

(11)

0 0 1/(b,wn)
1 0 -(b, wn

0

Proof. See Theorem 2.2 of [1]. [:]

As a consequence we obtain the following theorem.
THEOREM 3.2. Given a nonincreasing positive sequence f(O) > f(1) >_ >_

f(n-1) > 0, the residual vectors rk at each step of GMRES (A, b)^satisfy [Irkll f(k),
k 1,2,...,n- 1, if and only if A is of the form A WRHW* and b satisfies
W*b (g(1),... ,g(n))T, where W is a unitary matrix, R is a nonsingular upper
triangular matrix, H is defined in (11), and g(1), ,g(n) are defined in (4).

Proof. It is easy to see that for any nonsingular matrix C and orthonormal matrix
Q, GMRES (QCQ*, b) generates the same sequence of residual norms as GMRES
(C, Q’b). Combining this observation with Theorem 3.1 finishes the proof. [:]

Thus, all matrices A and right-hand side vectors b for which GMRES IA, b) gener-
ates the required residual norms must be such that A is of the form WRHW*, where
/:/is given by (11) and b satisfies (5) for some orthonormal matrix W. Conversely, for
all matrix-vector pairs A, b of this form, GMRES (A, b) does indeed generate residual
vectors with the required norms.

If we take, using the notation from (4), (6),

(12)

1 0 0 a+a0g(1)
0 1 0 a. +a0g(2)

0 1 Oln-1 + aog(n- 1)
0 0 0 aog(n)

then/:/R is a companion matrix c?rresponding to the eigenvalues {,2,... ,An}.
Since the matrix HR is similar to RH, it follows that, with this choice of R, the matrix
A WRW* has eigenvalues ,... ,An, and so such a matrix can be constructed
with any desired eigenvalues.

Note that for the simplest choice W I, b (g(1), g(2),..., g(n))T, the matrices
/:/(11), resp. R (12), are identical to the matrices B-1, resp. BA, from the previous
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CONVERGENCE CURVES FOR GMRES 469

section,

(13) B-1 -/2/=

0 0 0 1If(n-l)
1 0 0 -g(1)/f(n-1)

1 0 -g(n- 2)/f(n- 1)
1 -g(n-1)/f(n-1)

and A is given by R/:/. Emphasizing the fact that any nonincreasing convergence
curve can be considered, these simple formulas form a useful tool for constructing
numerical examples.

4. Conclusions and open questions. The results of this paper and [1] clearly
demonstrate that eigenvalues are not the relevant quantities in determining the behav-
ior of GMRES for nonnormal matrices. Any nonincreasing convergence curve can be
obtained with GMRES applied to a matrix having any desired eigenvalues. Different
quantities on which to base a convergence analysis have been suggested by others (for
example, [4], [5]). It remains an open problem to determine the most appropriate set
of system parameters for describing the behavior of GMRES. Another open problem
is to determine what convergence curves are possible for the envelope of GMRES [3].
That is, if one does not consider a particular initial residual but instead considers
the worst possible initial residual for each step k, maxllr011= Ilrkl], k 1,... ,n- 1,
where the vectors rk are generated by GMRES(A,r), then the sequence of norms
must again be nonincreasing, but not every nonincreasing sequence is possible. It
remains an open problem to characterize the possible sequences.
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