2022-09-07 Variable coefficients
Contents
2022-09-07 Variable coefficients#
Last time#
Conditioning of Vandermonde matrices
Chebyshev polynomials
Solving Poisson using Chebyshev collocation
Today#
Variable coefficients
Conservative/divergence form vs non-divergence forms
Verification with discontinuities
using Plots
default(linewidth=3)
using LinearAlgebra
function vander(x, k=nothing)
if k === nothing
k = length(x)
end
V = ones(length(x), k)
for j = 2:k
V[:, j] = V[:, j-1] .* x
end
V
end
function fdstencil(source, target, k)
"kth derivative stencil from source to target"
x = source .- target
V = vander(x)
rhs = zero(x)'
rhs[k+1] = factorial(k)
rhs / V
end
function poisson_fd(x, spoints, forcing; left=(0, zero), right=(0, zero))
n = length(x)
L = zeros(n, n)
rhs = forcing.(x)
for i in 2:n-1
jleft = min(max(1, i-spoints÷2), n-spoints+1)
js = jleft : jleft + spoints - 1
L[i, js] = -fdstencil(x[js], x[i], 2)
end
L[1,1:spoints] = fdstencil(x[1:spoints], x[1], left[1])
L[n,n-spoints+1:n] = fdstencil(x[n-spoints+1:n], x[n], right[1])
rhs[1] = left[2](x[1])
rhs[n] = right[2](x[n])
L, rhs
end
CosRange(a, b, n) = (a + b)/2 .+ (b - a)/2 * cos.(LinRange(-pi, 0, n))
function vander_chebyshev(x, n=nothing)
if isnothing(n)
n = length(x) # Square by default
end
m = length(x)
T = ones(m, n)
if n > 1
T[:, 2] = x
end
for k in 3:n
T[:, k] = 2 * x .* T[:,k-1] - T[:, k-2]
end
T
end
function chebdiff(x, n=nothing)
T = vander_chebyshev(x, n)
m, n = size(T)
dT = zero(T)
dT[:,2:3] = [one.(x) 4*x]
for j in 3:n-1
dT[:,j+1] = j * (2 * T[:,j] + dT[:,j-1] / (j-2))
end
ddT = zero(T)
ddT[:,3] .= 4
for j in 3:n-1
ddT[:,j+1] = j * (2 * dT[:,j] + ddT[:,j-1] / (j-2))
end
T, dT, ddT
end
function my_spy(A)
cmax = norm(vec(A), Inf)
s = max(1, ceil(120 / size(A, 1)))
spy(A, marker=(:square, s), c=:diverging_rainbow_bgymr_45_85_c67_n256, clims=(-cmax, cmax))
end
my_spy (generic function with 1 method)
“Nodal” (Lagrange interpolating polynomials) versus “Modal” bases#
n = 5
x = CosRange(-1, 1, n)
xx = LinRange(-1, 1, 100)
Tx = vander_chebyshev(x)
Txx, dTxx, ddTxx = chebdiff(xx, n)
plot(xx, Txx / Tx)
scatter!(x, [one.(x) zero.(x)])
# my_spy(Tx)
plot(xx, Txx)
Solving a BVP on Chebyshev nodes#
function poisson_cheb(n, rhsfunc, leftbc=(0, zero), rightbc=(0, zero))
x = CosRange(-1, 1, n)
T, dT, ddT = chebdiff(x)
L = -ddT
rhs = rhsfunc.(x)
for (index, (deriv, func)) in
[(1, leftbc), (n, rightbc)]
L[index,:] = (T, dT)[deriv+1][index,:]
rhs[index] = func(x[index])
end
x, L / T, rhs
end
poisson_cheb (generic function with 3 methods)
manufactured(x) = tanh(2x)
d_manufactured(x) = 2*cosh(2x)^-2
mdd_manufactured(x) = 8 * tanh(2x) / cosh(2x)^2
x, A, rhs = poisson_cheb(11, mdd_manufactured,
(0, manufactured), (1, d_manufactured))
plot(x, A \ rhs, marker=:circle)
plot!(manufactured, legend=:bottomright)
“spectral” (exponential) convergence#
function poisson_fd_error(n; spoints=3)
x = LinRange(-2, 2, n)
L, rhs = poisson_fd(x, spoints, x -> 2 * tanh(x) / cosh(x)^2,
left = (0, tanh),
right = (1, x -> cosh(x)^-2))
u = L \ rhs
norm(u - tanh.(x), Inf)
end
poisson_fd_error (generic function with 1 method)
function poisson_error(n)
x, A, rhs = poisson_cheb(n, mdd_manufactured, (0, manufactured), (1, d_manufactured))
u = A \ rhs
norm(u - manufactured.(x), Inf)
end
ns = 5:40
plot(ns, abs.(poisson_error.(ns)), marker=:circle, yscale=:log10)
ps = [1 2 3]
plot!([n -> n^-p for p in ps], label=map(p -> "\$n^{-$p}\$", ps))
plot(ns, [poisson_fd_error(n, spoints=5) for n in ns],
marker=:circle, yscale=:log10)
plot!([n -> n^-p for p in ps], label=map(p -> "\$n^{-$p}\$", ps))
Variable coefficients#
Heat conduction: steel, brick, wood, foam
Electrical conductivity: copper, rubber, air
Elasticity: steel, rubber, concrete, rock
Linearization of nonlinear materials
ketchup, glacier ice, rocks (mantle/lithosphere)
kappa_step(x) = .1 + .9 * (x > 0)
kappa_smooth(x) = .55 + .45 * sin(pi*x/2)
plot([kappa_step, kappa_smooth], xlims=(-1, 1), ylims=(0, 1), label="κ")
What physical scenario could this represent?
Qualitatively, what would a solution look like?
A naive finite difference solver#
Conservative (divergence) form |
Non-divergence form |
---|---|
\(-(\kappa u_x)_x = 0\) |
\(-\kappa u_{xx} - \kappa_x u_x = 0\) |
function poisson_nondivergence(x, spoints, kappa, forcing; leftbc=(0, zero), rightbc=(0, zero))
n = length(x)
L = zeros(n, n)
rhs = forcing.(x)
kappax = kappa.(x)
for i in 2:n-1
jleft = min(max(1, i-spoints÷2), n-spoints+1)
js = jleft : jleft + spoints - 1
kappa_x = fdstencil(x[js], x[i], 1) * kappax[js]
L[i, js] = -fdstencil(x[js], x[i], 2) .* kappax[i] - fdstencil(x[js], x[i], 1) * kappa_x
end
L[1,1:spoints] = fdstencil(x[1:spoints], x[1], leftbc[1])
if leftbc[1] == 1
L[1, :] *= kappax[1]
end
L[n,n-spoints+1:n] = fdstencil(x[n-spoints+1:n], x[n], rightbc[1])
if rightbc[1] == 1
L[n, :] *= kappax[n]
end
rhs[1] = leftbc[2](x[1])
rhs[n] = rightbc[2](x[n])
L, rhs
end
poisson_nondivergence (generic function with 1 method)
Try it#
x = LinRange(-1, 1, 30)
L, rhs = poisson_nondivergence(x, 3, kappa_smooth, zero, rightbc=(1, one))
u = L \ rhs
plot(x, u, label="solution")
plot!(x -> 5*kappa_smooth(x), label="kappa")
Manufactured solutions for variable coefficients#
manufactured(x) = tanh(2x)
d_manufactured(x) = 2*cosh(2x)^-2
d_kappa_smooth(x) = .45*pi/2 * cos(pi*x/2)
flux_manufactured_kappa_smooth(x) = kappa_smooth(x) * d_manufactured(x)
function forcing_manufactured_kappa_smooth(x)
8 * tanh(2x) / cosh(2x)^2 * kappa_smooth(x) -
d_kappa_smooth(x) * d_manufactured(x)
end
x = LinRange(-1, 1, 20)
L, rhs = poisson_nondivergence(x, 3, kappa_smooth,
forcing_manufactured_kappa_smooth,
leftbc=(0, manufactured), rightbc=(1, flux_manufactured_kappa_smooth))
u = L \ rhs;
plot(x, u, marker=:circle, legend=:bottomright, label="u_h")
plot!([manufactured flux_manufactured_kappa_smooth forcing_manufactured_kappa_smooth kappa_smooth],
label=["u_manufactured" "flux" "forcing" "kappa"], ylim=(-1, 2))
Convergence#
function poisson_error(n, spoints=3)
x = LinRange(-1, 1, n)
L, rhs = poisson_nondivergence(x, spoints, kappa_smooth,
forcing_manufactured_kappa_smooth,
leftbc=(0, manufactured), rightbc=(1, flux_manufactured_kappa_smooth))
u = L \ rhs
norm(u - manufactured.(x), Inf)
end
ns = 2 .^ (3:10)
plot(ns, poisson_error.(ns, 5), marker=:auto, xscale=:log10, yscale=:log10)
plot!([n -> n^-2, n -> n^-4], label=["\$1/n^2\$" "\$1/n^4\$"])
✅ Verified!#
Let’s try with the discontinuous coefficients#
x = LinRange(-1, 1, 20)
L, rhs = poisson_nondivergence(x, 3, kappa_step,
zero,
leftbc=(0, zero), rightbc=(0, one))
u = L \ rhs
plot(x, u, marker=:auto, legend=:bottomright)
Discretizing in conservative form#
Conservative (divergence) form |
Non-divergence form |
---|---|
\(-(\kappa u_x)_x = 0\) |
\(-\kappa u_{xx} - \kappa_x u_x = 0\) |
function poisson_conservative(n, kappa, forcing; leftbc=(0, zero), rightbc=(0, zero))
x = LinRange(-1, 1, n)
xstag = (x[1:end-1] + x[2:end]) / 2
L = zeros(n, n)
rhs = forcing.(x)
kappa_stag = kappa.(xstag)
for i in 2:n-1
flux_L = kappa_stag[i-1] * fdstencil(x[i-1:i], xstag[i-1], 1)
flux_R = kappa_stag[i] * fdstencil(x[i:i+1], xstag[i], 1)
js = i-1:i+1
weights = -fdstencil(xstag[i-1:i], x[i], 1)
L[i, i-1:i+1] = weights[1] * [flux_L..., 0] + weights[2] * [0, flux_R...]
end
if leftbc[1] == 0
L[1, 1] = 1
rhs[1] = leftbc[2](x[1])
rhs[2:end] -= L[2:end, 1] * rhs[1]
L[2:end, 1] .= 0
end
if rightbc[1] == 0
L[end,end] = 1
rhs[end] = rightbc[2](x[end])
rhs[1:end-1] -= L[1:end-1,end] * rhs[end]
L[1:end-1,end] .= 0
end
x, L, rhs
end
poisson_conservative (generic function with 1 method)
Compare conservative vs non-divergence forms#
forcing = zero # one
x, L, rhs = poisson_conservative(20, kappa_step,
forcing, leftbc=(0, zero), rightbc=(0, one))
u = L \ rhs
plot(x, u, marker=:circle, legend=:bottomright)
x = LinRange(-1, 1, 20)
L, rhs = poisson_nondivergence(x, 3, kappa_step,
forcing, leftbc=(0, zero), rightbc=(0, one))
u = L \ rhs
plot(x, u, marker=:circle, legend=:bottomright)
Continuity of flux#
forcing = zero
L, rhs = poisson_nondivergence(x, 3, kappa_step,
forcing, leftbc=(0, zero), rightbc=(0, one))
u = L \ rhs
plot(x, u, marker=:circle, legend=:bottomright)
xstag = (x[1:end-1] + x[2:end]) ./ 2
du = (u[1:end-1] - u[2:end]) ./ diff(x)
plot(xstag, [du .* kappa_step.(xstag)], marker=:circle, ylims=[-1, 1])
Manufactured solutions with discontinuous coefficients#
We need to be able to evaluate derivatives of the flux \(-\kappa u_x\).
A physically-realizable solution would have continuous flux, but we we’d have to be making a physical solution to have that in verification.
Idea: replace the discontinuous function with a continuous one with a rapid transition.
kappa_tanh(x, epsilon=.1) = .55 + .45 * tanh(x / epsilon)
d_kappa_tanh(x, epsilon=.1) = .45/epsilon * cosh(x/epsilon)^-2
plot([kappa_tanh])
Solving with the smoothed step \(\kappa\)#
kappa_tanh(x, epsilon=.02)= .55 + .45 * tanh(x / epsilon)
d_kappa_tanh(x, epsilon=.02) = .45/epsilon * cosh(x/epsilon)^-2
flux_manufactured_kappa_tanh(x) = kappa_tanh(x) * d_manufactured(x)
function forcing_manufactured_kappa_tanh(x)
8 * tanh(2x) / cosh(2x)^2 * kappa_tanh(x) -
d_kappa_tanh(x) * d_manufactured(x)
end
x, L, rhs = poisson_conservative(200, kappa_tanh,
forcing_manufactured_kappa_tanh,
leftbc=(0, manufactured), rightbc=(0, manufactured))
u = L \ rhs
plot(x, u, marker=:circle, legend=:bottomright, title="Error $(norm(u - manufactured.(x), Inf))")
plot!([manufactured flux_manufactured_kappa_tanh forcing_manufactured_kappa_tanh kappa_tanh],
label=["u_manufactured" "flux" "forcing" "kappa"], ylim=(-5, 5))
Convergence#
function poisson_error(n, spoints=3)
x, L, rhs = poisson_conservative(n, kappa_tanh,
forcing_manufactured_kappa_tanh,
leftbc=(0, manufactured), rightbc=(0, manufactured))
u = L \ rhs
norm(u - manufactured.(x), Inf)
end
ns = 2 .^ (3:10)
plot(ns, poisson_error.(ns, 3), marker=:auto, xscale=:log10, yscale=:log10)
plot!(n -> n^-2, label="\$1/n^2\$")
Outlook#
Manufactured solutions can be misleading for verification in the presence of rapid coefficient variation.
Forcing terms may be poorly resolved on the grid
Non-conservative methods are scary
Can look great during verification on smooth problems, then break catastrophically
Conservative methods are generally robust, but now we have choices to make
What if \(\kappa(x)\) is gridded data? How do we evaluate at staggered points?
What does this mean for boundary conditions, \(\kappa u_x = g\)
What do staggered points mean on unstructured/adaptive meshes?
Which terms should we evaluate where?