2022-09-19 Blasius
Contents
2022-09-19 Blasius#
Last time#
NLsolve Newton solver library
p-Laplacian robustness
diagnostics
Algorithmic differentiation via Zygote
Symbolic differentiation
Today#
Structured by-hand differentiation
Concept of PDE-based inference (inverse problems)
The Blasius problem (activity)
using Plots
default(linewidth=3)
using LinearAlgebra
using SparseArrays
using Zygote
function vander(x, k=nothing)
if k === nothing
k = length(x)
end
V = ones(length(x), k)
for j = 2:k
V[:, j] = V[:, j-1] .* x
end
V
end
vander (generic function with 2 methods)
Hand coding derivatives: it’s all chain rule and associativity#
function f(x)
y = x
for _ in 1:2
a = y^pi
b = cos(a)
c = log(y)
y = b * c
end
y
end
f(1.9), gradient(f, 1.9)
(-1.5346823414986814, (-34.03241959914049,))
function df(x, dx)
y = x
dy = dx
for _ in 1:2
a = y^pi
da = pi * y^(pi-1) * dy
b = cos(a)
db = -sin(a) * da
c = log(y)
dc = 1/y * dy
y = b * c
dy = db * c + b * dc
end
dy
end
df(1.9, 1)
-34.03241959914048
We can go the other way#
We can differentiate a composition \(h(g(f(x)))\) as
What we’ve done above is called “forward mode”, and amounts to placing the parentheses in the chain rule like
The expression means the same thing if we rearrange the parentheses,
which we can compute with in reverse order via
A reverse mode example#
function g(x)
a = x^pi
b = cos(a)
c = log(x)
y = b * c
y
end
(g(1.4), gradient(g, 1.4))
(-0.32484122107701546, (-1.2559761698835525,))
function gback(x, y_)
a = x^pi
b = cos(a)
c = log(x)
y = b * c
# backward pass
c_ = y_ * b
b_ = c * y_
a_ = -sin(a) * b_
x_ = 1/x * c_ + pi * x^(pi-1) * a_
x_
end
gback(1.4, 1)
-1.2559761698835525
Kinds of algorithmic differentation#
Source transformation: Fortran code in, Fortran code out
Duplicates compiler features, usually incomplete language coverage
Produces efficient code
Operator overloading: C++ types
Hard to vectorize
Loops are effectively unrolled/inefficient
Just-in-time compilation: tightly coupled with compiler
JIT lag
Needs dynamic language features (JAX) or tight integration with compiler (Zygote, Enzyme)
Some sharp bits
How does Zygote work?#
h1(x) = x^3 + 3*x
h2(x) = ((x * x) + 3) * x
@code_llvm h1(4.)
; @ In[7]:1 within `h1`
define double @julia_h1_5414(double %0) #0 {
top:
; ┌ @ intfuncs.jl:322 within `literal_pow`
; │┌ @ operators.jl:591 within `*` @ float.jl:385
%1 = fmul double %0, %0
%2 = fmul double %1, %0
; └└
; ┌ @ promotion.jl:389 within `*` @ float.jl:385
%3 = fmul double %0, 3.000000e+00
; └
; ┌ @ float.jl:383 within `+`
%4 = fadd double %3, %2
; └
ret double %4
}
@code_llvm gradient(h1, 4.)
; @ /home/jed/.julia/packages/Zygote/xGkZ5/src/compiler/interface.jl:95 within `gradient`
define [1 x double] @julia_gradient_5495(double %0) #0 {
top:
; @ /home/jed/.julia/packages/Zygote/xGkZ5/src/compiler/interface.jl:97 within `gradient`
; ┌ @ /home/jed/.julia/packages/Zygote/xGkZ5/src/compiler/interface.jl:45 within `#60`
; │┌ @ In[7]:1 within `Pullback`
; ││┌ @ /home/jed/.julia/packages/Zygote/xGkZ5/src/compiler/chainrules.jl:206 within `ZBack`
; │││┌ @ /home/jed/.julia/packages/Zygote/xGkZ5/src/lib/number.jl:12 within `literal_pow_pullback`
; ││││┌ @ intfuncs.jl:321 within `literal_pow`
; │││││┌ @ float.jl:385 within `*`
%1 = fmul double %0, %0
; ││││└└
; ││││┌ @ promotion.jl:389 within `*` @ float.jl:385
%2 = fmul double %1, 3.000000e+00
; │└└└└
; │┌ @ /home/jed/.julia/packages/Zygote/xGkZ5/src/lib/lib.jl:17 within `accum`
; ││┌ @ float.jl:383 within `+`
%3 = fadd double %2, 3.000000e+00
; └└└
; @ /home/jed/.julia/packages/Zygote/xGkZ5/src/compiler/interface.jl:98 within `gradient`
%.fca.0.insert = insertvalue [1 x double] zeroinitializer, double %3, 0
ret [1 x double] %.fca.0.insert
}
Forward or reverse?#
It all depends on the shape.
One input, many outputs: use forward mode
“One input” can be looking in one direction
Many inputs, one output: use reverse mode
Will need to traverse execution backwards (“tape”)
Hierarchical checkpointing
About square? Forward is usually a bit more efficient.
Inference using PDE-based models#
Compressible Blasius boundary layer#
Activity will solve this 1D nonlinear PDE