2022-09-23 Transient
Contents
2022-09-23 Transient#
Last time#
Blasius working session
Intro to transient problems
Today#
Stability diagrams
Energy dissipation
Exploring the \(\theta\) method
PDE at ODE
using Plots
default(linewidth=3)
using LinearAlgebra
using SparseArrays
Ordinary Differential Equations#
Given initial condition \(u_0 = u(t=0)\), find \(u(t)\) for \(t > 0\) that satisfies
Application |
\(u\) |
\(f\) |
---|---|---|
Orbital dynamics |
position, momentum |
conservation of momentum |
Chemical reactions |
concentration |
conservation of atoms |
Epidemiology |
infected/recovered population |
transmission and recovery |
Heat transfer |
temperature |
conservation of energy |
Seismology |
displacement, momentum |
conservative of momentum |
Solving differential equations#
Linear equations#
Autonomous if \(A(t) = A\) and source independent of \(t\)
Suppose \(u\) and \(a = A\) are scalars: \(u(t) = e^{at} u_0\)
Can do the same for systems#
What does it mean to exponentiate a matrix?#
Taylor series!
and there are many practical ways to compute it.
Question#
Suppose that the diagonalization \(A = X \Lambda X^{-1}\) exists and derive a finite expression for the matrix exponential using the scalar exp
function.
Forward Euler method#
function ode_euler(f, u0; tfinal=10., h=0.1)
u = copy(u0)
t = 0.
thist = [t]
uhist = [u0]
while t < tfinal
tnext = min(t+h, tfinal)
h = tnext - t
u += h * f(t, u)
t = tnext
push!(thist, t)
push!(uhist, u)
end
thist, hcat(uhist...)
end
ode_euler (generic function with 1 method)
f1(t, u; k=21) = -k * (u .- cos(t))
thist, uhist = ode_euler(f1, [1.], tfinal=10, h=.1)
scatter(thist, uhist[1,:])
plot!(cos)
Forward Euler on a linear system#
f2(t, u) = [0 1; -1 0] * u
thist, uhist = ode_euler(f2, [0, 1.], h=.05, tfinal=10)
scatter(thist, uhist')
plot!([cos, sin])
eigen([0 1; -1 0])
Eigen{ComplexF64, ComplexF64, Matrix{ComplexF64}, Vector{ComplexF64}}
values:
2-element Vector{ComplexF64}:
0.0 - 1.0im
0.0 + 1.0im
vectors:
2×2 Matrix{ComplexF64}:
0.707107-0.0im 0.707107+0.0im
0.0-0.707107im 0.0+0.707107im
Linear Stability Analysis#
Why did Euler converge on the first problem (with sufficiently small steps) while always diverging on the second problem?
We can understand the convergence of methods by analyzing the test problem
When does this map cause solutions to “blow up” and when is it stable?
Stability diagrams (a property of methods)#
function plot_stability(Rz, title; xlims=(-3, 3), ylims=(-2, 2))
x = LinRange(xlims[1], xlims[2], 100)
y = LinRange(ylims[1], ylims[2], 100)
heatmap(x, y, (x, y) -> abs(Rz(x + 1im*y)), c=:bwr, clims=(0, 2), aspect_ratio=:equal, title=title)
end
plot_stability(z -> 1 + z, "Forward Euler")
Implicit methods#
Recall that forward Euler is the step
plot_stability(z -> 1 / (1 - z), "Backward Euler")
Advection with centered stencil#
function advect_center(t, u)
n = length(u)
dx = 2 / n
uwrap = [u[end], u..., u[1]]
f = zero(u)
for i in 1:n
f[i] = -(uwrap[i+2] - uwrap[i]) / (2*dx)
end
f
end
x = LinRange(-1, 1, 51)[1:end-1]
u0 = exp.(-9 * x .^ 2)
thist, uhist = ode_euler(advect_center, u0, h=.02, tfinal=1);
nsteps = size(uhist, 2)
@show nsteps
plot(x, uhist[:, 1:(nsteps÷8):end])
nsteps = 51
Advection with upwind stencil#
function advect_upwind(t, u)
n = length(u)
dx = 2 / n
uwrap = [u[end], u..., u[1]]
f = zero(u)
for i in 1:n
f[i] = -(uwrap[i+1] - uwrap[i]) / dx
end
f
end
x = LinRange(-1, 1, 51)[1:end-1]
u0 = exp.(-9 * x .^ 2)
@time thist, uhist = ode_euler(advect_upwind, u0, h=.04, tfinal=1);
0.062574 seconds (142.92 k allocations: 7.275 MiB, 21.24% gc time, 99.33% compilation time)
nsteps = size(uhist, 2)
plot(x, uhist[:, 1:(nsteps÷8):end])
Centered advection with Runge-Kutta#
function ode_rk4(f, u0; tfinal=10., h=0.4)
u = copy(u0)
t = 0.
thist = [t]
uhist = [u0]
while t < tfinal
tnext = min(t+h, tfinal)
h = tnext - t
ydot1 = f(t, u)
ydot2 = f(t+h/2, u + h/2*ydot1)
ydot3 = f(t+h/2, u + h/2*ydot2)
ydot4 = f(t+h, u + h*ydot3)
u += h/6 * (ydot1 + 2*ydot2 + 2*ydot3 + ydot4)
t = tnext
push!(thist, t)
push!(uhist, u)
end
thist, hcat(uhist...)
end
ode_rk4 (generic function with 1 method)
x = LinRange(-1, 1, 51)[1:end-1]
u0 = exp.(-9 * x .^ 2)
@time thist, uhist = ode_rk4(advect_center, u0, h=.01, tfinal=1);
nsteps = size(uhist, 2)
plot(x, uhist[:, 1:(nsteps÷8):end])
0.091960 seconds (555.84 k allocations: 27.986 MiB, 98.61% compilation time)
Midpoint/trapezoid and \(\theta\) methods#
Forward and backward Euler are bookends of the family known as \(\theta\) methods.
which, for linear problems, is solved as
\(\theta=0\) is explicit Euler, \(\theta=1\) is implicit Euler, and \(\theta=1/2\) are the midpoint or trapezoid rules (equivalent for linear problems). The stability function is
Rz_theta(z, theta) = (1 + (1-theta)*z) / (1 - theta*z)
theta=0.7
plot_stability(z -> Rz_theta(z, theta), "\$\\theta=$theta\$")
A \(\theta\) solver#
function ode_theta_linear(A, u0; forcing=zero, tfinal=1, h=0.1, theta=.5)
u = copy(u0)
t = 0.
thist = [t]
uhist = [u0]
while t < tfinal
tnext = min(t+h, tfinal)
h = tnext - t
rhs = (I + h*(1-theta)*A) * u .+ h*forcing(t+h*theta)
u = (I - h*theta*A) \ rhs
t = tnext
push!(thist, t)
push!(uhist, u)
end
thist, hcat(uhist...)
end
ode_theta_linear (generic function with 1 method)
# Test on oscillator
A = [0 1; -1 0]
thist, uhist = ode_theta_linear(A, [0., 1], h=.4, theta=.5, tfinal=20)
scatter(thist, uhist')
plot!([cos, sin])
Stiff decay to cosine#
k = 10000
thist, uhist = ode_theta_linear(-k, [.2], forcing=t -> k*cos(t), tfinal=5, h=.2, theta=1)
scatter(thist, uhist[1,:])
plot!(cos)
Advection as linear ODE#
function advect_matrix(n; upwind=false)
dx = 2 / n
rows = [1]
cols = [1]
vals = [0.]
wrap(j) = (j + n - 1) % n + 1
for i in 1:n
append!(rows, [i, i])
if upwind
append!(cols, wrap.([i-1, i]))
append!(vals, [1., -1] ./ dx)
else
append!(cols, wrap.([i-1, i+1]))
append!(vals, [1., -1] ./ 2dx)
end
end
sparse(rows, cols, vals)
end
eigvals(Matrix(advect_matrix(10)))
10-element Vector{ComplexF64}:
0.0 - 2.938926261462368im
0.0 - 2.9389262614623664im
0.0 - 1.2560848302247556e-16im
0.0 + 1.2560848302247556e-16im
0.0 + 2.9389262614623664im
0.0 + 2.938926261462368im
4.81482486096809e-34 - 4.755282581475769im
4.81482486096809e-34 + 4.755282581475769im
3.0814879110195774e-33 - 4.7552825814757655im
3.0814879110195774e-33 + 4.7552825814757655im
n = 50
A = advect_matrix(n, upwind=false)
x = LinRange(-1, 1, n+1)[1:end-1]
u0 = exp.(-9 * x .^ 2)
@time thist, uhist = ode_theta_linear(A, u0, h=.04, theta=0.5, tfinal=1.);
nsteps = size(uhist, 2)
plot(x, uhist[:, 1:(nsteps÷8):end])
1.535148 seconds (5.14 M allocations: 263.043 MiB, 6.16% gc time, 99.93% compilation time)
Heat equation as linear ODE#
How do different \(\theta \in [0, 1]\) compare in terms of stability?
Are there artifacts even when the solution is stable?
function heat_matrix(n)
dx = 2 / n
rows = [1]
cols = [1]
vals = [0.]
wrap(j) = (j + n - 1) % n + 1
for i in 1:n
append!(rows, [i, i, i])
append!(cols, wrap.([i-1, i, i+1]))
append!(vals, [1, -2, 1] ./ dx^2)
end
sparse(rows, cols, vals)
end
heat_matrix(5)
5×5 SparseMatrixCSC{Float64, Int64} with 15 stored entries:
-12.5 6.25 ⋅ ⋅ 6.25
6.25 -12.5 6.25 ⋅ ⋅
⋅ 6.25 -12.5 6.25 ⋅
⋅ ⋅ 6.25 -12.5 6.25
6.25 ⋅ ⋅ 6.25 -12.5
n = 100
A = heat_matrix(n)
x = LinRange(-1, 1, n+1)[1:end-1]
u0 = exp.(-200 * x .^ 2)
@time thist, uhist = ode_theta_linear(A, u0, h=.1, theta=1, tfinal=1);
nsteps = size(uhist, 2)
plot(x, uhist[:, 1:5])
0.101896 seconds (198.03 k allocations: 10.565 MiB, 98.03% compilation time)