2022-10-28 Finite Elements#

Last time#

  • Galerkin for Poisson

  • Finite element constructions

Today#

  • libCEED abstraction

  • Restriction to elements

  • Nonlinear problems and the QFunction abstraction

  • Advection-diffusion

using Plots
default(linewidth=3)
using LinearAlgebra
using SparseArrays
using FastGaussQuadrature

function my_spy(A)
    cmax = norm(vec(A), Inf)
    s = max(1, ceil(120 / size(A, 1)))
    spy(A, marker=(:square, s), c=:diverging_rainbow_bgymr_45_85_c67_n256, clims=(-cmax, cmax))
end

function vander_legendre_deriv(x, k=nothing)
    if isnothing(k)
        k = length(x) # Square by default
    end
    m = length(x)
    Q = ones(m, k)
    dQ = zeros(m, k)
    Q[:, 2] = x
    dQ[:, 2] .= 1
    for n in 1:k-2
        Q[:, n+2] = ((2*n + 1) * x .* Q[:, n+1] - n * Q[:, n]) / (n + 1)
        dQ[:, n+2] = (2*n + 1) * Q[:,n+1] + dQ[:,n]
    end
    Q, dQ
end

function febasis(P, Q)
    x, _ = gausslobatto(P)
    q, w = gausslegendre(Q)
    Pk, _ = vander_legendre_deriv(x)
    Bp, Dp = vander_legendre_deriv(q, P)
    B = Bp / Pk
    D = Dp / Pk
    x, q, w, B, D
end

function L2_galerkin(P, Q, f)
    x, q, w, B, _ = febasis(P, Q)
    A = B' * diagm(w) * B
    rhs = B' * diagm(w) * f.(q)
    u = A \ rhs
    x, u
end
L2_galerkin (generic function with 1 method)

General form#

\[ \int_\Omega v\cdot f_0(u, \nabla u) + \nabla v\cdot f_1(u, \nabla u) = 0, \quad \forall v\]

we discretize as

\[ \sum_e \mathcal E_e^T \Big( B^T W \left\lvert \frac{\partial x}{\partial X} \right\rvert f_0(\tilde u, \nabla \tilde u) + D^T \left(\frac{\partial X}{\partial x}\right)^{T} W \left\lvert \frac{\partial x}{\partial X} \right\rvert f_1(\tilde u, \nabla\tilde u) \Big) = 0 \]
where \(\tilde u = B \mathcal E_e u\) and \(\nabla \tilde u = \frac{\partial X}{\partial x} D \mathcal E_e u\) are the values and gradients evaluated at quadrature points.

Isoparametric mapping#

Given the reference coordinates \(X \in \hat K \subset R^n\) and physical coordinates \(x(X)\), an integral on the physical element can be written

\[ \int_{K = x(\hat K)} f(x) dx = \int_K \underbrace{\left\lvert \frac{\partial x}{\partial X} \right\rvert}_{\text{determinant}} f(x(X)) dX .\]

Notation

Meaning

\(x\)

physical coordinates

\(X\)

reference coordinates

\(\mathcal E_e\)

restriction from global vector to element \(e\)

\(B\)

values of nodal basis functions at quadrature ponits on reference element

\(D\)

gradients of nodal basis functions at quadrature points on reference element

\(W\)

diagonal matrix of quadrature weights on reference element

\(\frac{\partial x}{\partial X} = D \mathcal E_e x \)

gradient of physical coordinates with respect to reference coordinates

\(\left\lvert \frac{\partial x}{\partial X}\right\rvert\)

determinant of coordinate transformation at each quadrature point

\(\frac{\partial X}{\partial x} = \left(\frac{\partial x}{\partial X}\right)^{-1}\)

derivative of reference coordinates with respect to physical coordinates

Finite element mesh and restriction#

function fe1_mesh(P, nelem)
    x = LinRange(-1, 1, nelem+1)
    rows = Int[]
    cols = Int[]
    for i in 1:nelem
        append!(rows, (i-1)*P+1:i*P)
        append!(cols, (i-1)*(P-1)+1:i*(P-1)+1)
    end
    x, sparse(cols, rows, ones(nelem*P))'
end
P, nelem = 4, 3
x, E = fe1_mesh(P, nelem)
E
12×10 Adjoint{Float64, SparseMatrixCSC{Float64, Int64}} with 12 stored entries:
 1.0   ⋅    ⋅    ⋅    ⋅    ⋅    ⋅    ⋅    ⋅    ⋅ 
  ⋅   1.0   ⋅    ⋅    ⋅    ⋅    ⋅    ⋅    ⋅    ⋅ 
  ⋅    ⋅   1.0   ⋅    ⋅    ⋅    ⋅    ⋅    ⋅    ⋅ 
  ⋅    ⋅    ⋅   1.0   ⋅    ⋅    ⋅    ⋅    ⋅    ⋅ 
  ⋅    ⋅    ⋅   1.0   ⋅    ⋅    ⋅    ⋅    ⋅    ⋅ 
  ⋅    ⋅    ⋅    ⋅   1.0   ⋅    ⋅    ⋅    ⋅    ⋅ 
  ⋅    ⋅    ⋅    ⋅    ⋅   1.0   ⋅    ⋅    ⋅    ⋅ 
  ⋅    ⋅    ⋅    ⋅    ⋅    ⋅   1.0   ⋅    ⋅    ⋅ 
  ⋅    ⋅    ⋅    ⋅    ⋅    ⋅   1.0   ⋅    ⋅    ⋅ 
  ⋅    ⋅    ⋅    ⋅    ⋅    ⋅    ⋅   1.0   ⋅    ⋅ 
  ⋅    ⋅    ⋅    ⋅    ⋅    ⋅    ⋅    ⋅   1.0   ⋅ 
  ⋅    ⋅    ⋅    ⋅    ⋅    ⋅    ⋅    ⋅    ⋅   1.0
function xnodal(x, P)
    xn = Float64[]
    xref, _ = gausslobatto(P)
    for i in 1:length(x)-1
        xL, xR = x[i:i+1]
        append!(xn, (xL+xR)/2 .+ (xR-xL)/2 * xref[1+(i>1):end])
    end
    xn
end
xn = xnodal(x, 10)
scatter(xn, zero, marker=:square)
../_images/2022-10-28-fem_9_0.svg

Finite element building blocks#

struct FESpace
    P::Int
    Q::Int
    nelem::Int
    x::Vector
    xn::Vector
    Et::SparseMatrixCSC{Float64, Int64}
    q::Vector
    w::Vector
    B::Matrix
    D::Matrix
    function FESpace(P, Q, nelem)
        x, E = fe1_mesh(P, nelem)
        xn = xnodal(x, P)
        _, q, w, B, D = febasis(P, Q)
        new(P, Q, nelem, x, xn, E', q, w, B, D)
    end
end
# Extract out what we need for element e
function fe_element(fe, e)
    xL, xR = fe.x[e:e+1]
    q = (xL+xR)/2 .+ (xR-xL)/2*fe.q
    w = (xR - xL)/2 * fe.w
    E = fe.Et[:, (e-1)*fe.P+1:e*fe.P]'
    dXdx = ones(fe.Q) * 2 / (xR - xL)
    q, w, E, dXdx
end

fe = FESpace(3, 3, 5)
q, w, E, dXdx = fe_element(fe, 1);
@show q
@show sum(w)
E
q = [-0.9549193338482966, -0.8, -0.6450806661517035]
sum(w) = 0.3999999999999999
3×11 Adjoint{Float64, SparseMatrixCSC{Float64, Int64}} with 3 stored entries:
 1.0   ⋅    ⋅    ⋅    ⋅    ⋅    ⋅    ⋅    ⋅    ⋅    ⋅ 
  ⋅   1.0   ⋅    ⋅    ⋅    ⋅    ⋅    ⋅    ⋅    ⋅    ⋅ 
  ⋅    ⋅   1.0   ⋅    ⋅    ⋅    ⋅    ⋅    ⋅    ⋅    ⋅ 

Finite element residual assembly#

\[ v^T F(u) \sim \int_\Omega v\cdot f_0(u, \nabla u) + \nabla v\cdot f_1(u, \nabla u) = 0, \quad \forall v\]
\[ \sum_e \mathcal E_e^T \Big( B^T W \left\lvert \frac{\partial x}{\partial X} \right\rvert f_0(\tilde u, \nabla \tilde u) + D^T \left(\frac{\partial X}{\partial x}\right)^{T} W \left\lvert \frac{\partial x}{\partial X} \right\rvert f_1(\tilde u, \nabla\tilde u) \Big) = 0 \]

where \(\tilde u = B \mathcal E_e u\) and \(\nabla \tilde u = \frac{\partial X}{\partial x} D \mathcal E_e u\) are the values and gradients evaluated at quadrature points.

kappa(x) = 0.6 .+ 0.4*sin(pi*x/2)
fq(q, u, Du) = 0*u .- 1, kappa.(q) .* Du
dfq(q, u, du, Du, Ddu) = 0*du, kappa.(q) .* Ddu

function fe_residual(u_in, fe, fq; bci=[1], bcv=[1.])
    u = copy(u_in); v = zero(u)
    u[bci] = bcv
    for e in 1:fe.nelem
        q, w, E, dXdx = fe_element(fe, e)
        B, D = fe.B, fe.D
        ue = E * u
        uq = B * ue
        Duq = dXdx .* (D * ue)
        f0, f1 = fq(q, uq, Duq)
        ve = B' * (w .* f0) + D' * (dXdx .* w .* f1)
        v += E' * ve
    end
    v[bci] = u_in[bci] - u[bci]
    #println("residual")
    v
end
fe_residual (generic function with 1 method)
import NLsolve: nlsolve

fe = FESpace(3, 3, 20)
u0 = zero(fe.xn)
sol = nlsolve(u -> fe_residual(u, fe, fq), u0; method=:newton)
#plot(fe.xn, sol.zero, marker=:auto)
Results of Nonlinear Solver Algorithm
 * Algorithm: Newton with line-search
 * Starting Point: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
 * Zero: [1.0000000000039475, 1.4927406210509597, 1.9672049360599393, 2.4184464161953563, 2.842731803751349, 3.237606533113795, 3.601932148325619, 3.935620553694385, 4.239530313788561, 4.515069053115947, 4.764128759073442, 4.988727193305379, 5.1910305785624775, 5.373093946001602, 5.536940081173518, 5.684391333646472, 5.81716450203112, 5.936767982438539, 6.044588540803668, 6.141830397098076, 6.229584974973035, 6.308795718312478, 6.3803102227209045, 6.444860602250416, 6.503100675080583, 6.555595710653866, 6.602848027373359, 6.645292412165557, 6.683313141956646, 6.71724283409507, 6.747373276818846, 6.773956336883946, 6.797210378615518, 6.817322369848602, 6.834451177061841, 6.848730316022175, 6.860269040775656, 6.869155363658036, 6.875455590114675, 6.879217330676398, 6.880467948789745]
 * Inf-norm of residuals: 0.000000
 * Iterations: 1
 * Convergence: true
   * |x - x'| < 0.0e+00: false
   * |f(x)| < 1.0e-08: true
 * Function Calls (f): 2
 * Jacobian Calls (df/dx): 2

Finite element Jacobian assembly#

\[ v^T F(u) \sim \int_\Omega v\cdot f_0(u, \nabla u) + \nabla v\cdot f_1(u, \nabla u) = 0, \quad \forall v\]
\[ v^T J(u) du \sim \int_\Omega v\cdot df_0(u, du, \nabla u, \nabla du) + \nabla v\cdot df_1(u, du, \nabla u, \nabla du) = 0, \quad \forall v\]
function fe_jacobian(u_in, fe, dfq; bci=[1], bcv=[1.])
    u = copy(u_in); u[bci] = bcv
    rows, cols, vals = Int[], Int[], Float64[]
    for e in 1:fe.nelem
        q, w, E, dXdx = fe_element(fe, e)
        B, D, P = fe.B, fe.D, fe.P
        ue = E * u
        uq = B * ue; Duq = dXdx .* (D * ue)
        K = zeros(P, P)
        for j in 1:fe.P
            du = B[:,j]
            Ddu = dXdx .* D[:,j]
            df0, df1 = dfq(q, uq, du, Duq, Ddu)
            K[:,j] = B' * (w .* df0) + D' * (dXdx .* w .* df1)
        end
        inds = rowvals(E')
        append!(rows, kron(ones(P), inds))
        append!(cols, kron(inds, ones(P)))
        append!(vals, vec(K))
    end
    A = sparse(rows, cols, vals)
    A[bci, :] .= 0; A[:, bci] .= 0
    A[bci,bci] = diagm(ones(length(bci)))
    A
end
fe_jacobian (generic function with 1 method)
sol = nlsolve(u -> fe_residual(u, fe, fq),
    u -> fe_jacobian(u, fe, dfq),
    u0;
    method=:newton)
Results of Nonlinear Solver Algorithm
 * Algorithm: Newton with line-search
 * Starting Point: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
 * Zero: [1.0, 1.4927406210022975, 1.9672049360133526, 2.418446416148008, 2.8427318037033396, 3.237606533065686, 3.601932148276197, 3.9356205536428224, 4.2395303137362665, 4.51506905306329, 4.764128759020454, 4.988727193252867, 5.191030578510388, 5.373093945949693, 5.5369400811206395, 5.684391333592148, 5.817164501975459, 5.936767982381641, 6.04458854074561, 6.141830397039554, 6.2295849749140775, 6.3087957182525365, 6.380310222660033, 6.444860602188671, 6.503100675018002, 6.555595710590095, 6.602848027309177, 6.645292412100275, 6.683313141890995, 6.717242834029186, 6.7473732767527315, 6.773956336817821, 6.797210378549382, 6.81732236978235, 6.834451176994862, 6.848730315954377, 6.860269040707049, 6.869155363588632, 6.875455590044476, 6.879217330605506, 6.880467948718754]
 * Inf-norm of residuals: 0.000000
 * Iterations: 1
 * Convergence: true
   * |x - x'| < 0.0e+00: false
   * |f(x)| < 1.0e-08: true
 * Function Calls (f): 2
 * Jacobian Calls (df/dx): 2

Spy on the Jacobian#

fe = FESpace(6, 6, 4)
u0 = zero(fe.xn)
J = fe_jacobian(u0, fe, dfq)
my_spy(J)
plot!(title="cond = $(cond(Matrix(J)))")]
syntax: extra token "]" after end of expression

Stacktrace:
 [1] top-level scope
   @ In[10]:5
 [2] eval
   @ ./boot.jl:368 [inlined]
 [3] include_string(mapexpr::typeof(REPL.softscope), mod::Module, code::String, filename::String)
   @ Base ./loading.jl:1428
  • What is interesting about this matrix structure?

    • What would the matrix structure look like for a finite difference method that is 6th order accurate?

Mass matrices#

\[ v^T M u \sim \int v u \]
fe = FESpace(3, 3, 40)
u0 = zero(fe.xn)
function mass(q, u, du, Du, Ddu)
    df0 = du
    df1 = 0*du
    df0, df1
end
J = fe_jacobian(zero.(fe.xn), fe, mass, bci=[], bcv=[])
my_spy(J)
../_images/2022-10-28-fem_23_0.svg
P = diagm(1 ./ diag(J))
e1 = eigvals(Matrix(P * J))
e2 = eigvals(Matrix(J) / maximum(J))
scatter([real.(e1) real.(e2)], [imag.(e1) imag.(e2)])
../_images/2022-10-28-fem_24_0.svg

Advection-diffusion (time independent)#

(50)#\[\begin{align} \mathbf w \cdot \nabla u - \nabla\cdot\big[ \kappa \nabla u \big] &= s & \int_\Omega v \mathbf w \cdot \nabla u + \int_\Omega \nabla v \cdot \kappa \nabla u &= \int_\Omega v s, \forall v \end{align}\]
wind = 500
fq(q, u, Du) = wind .* Du -one.(u), 1 * Du

fe = FESpace(5, 5, 10)
u0 = zero(fe.xn)
N = length(fe.xn)
sol = nlsolve(u -> fe_residual(u, fe, fq; bci=[1, N], bcv=[0, 0]), zero(fe.xn), method=:newton)
plot(fe.xn, sol.zero, marker=:auto, legend=:none)
../_images/2022-10-28-fem_26_0.svg

Artificial diffusion and Streamline Upwinding#

Observation: the residual is large where diffusion is needed.

\[\int_\Omega v \mathbf w \cdot \nabla u + \int_\Omega \nabla v \cdot \kappa \nabla u - \int_\Omega v s + \int_\Omega \tau^e (\mathbf w \cdot \nabla v) \big(\mathbf w \cdot \nabla u - \nabla\cdot(\kappa\nabla u) - s\big)\]

Examine what this does to advection#

\[(\mathbf w \cdot \nabla v)(\mathbf w \cdot \nabla u) = \nabla v (\mathbf w \otimes \mathbf w) \nabla u\]

This is “pencil” shaped diffusion, only along the streamline. If \(\tau^e\) is chosen appropriately, this will be enough diffusion to get a Peclet number of about 1 when it needs it.

Optimal stabilization#

A nodally exact solution for 1D advection.

\[ \tau^e = \frac{h}{2 \lVert \mathbf w \rVert} \Big( \coth Pe - \frac{1}{Pe} \Big)\]

wind = 1000; k = 1
fq(q, u, Du) = wind .* Du -one.(u), k * Du + tau * wind.^2 .* Du

n = 30; h = 2 / n; Pe = abs(wind) * h / (2 * k)
tau = h / (2 * abs(wind)) * (coth(Pe) - 1 / Pe)
fe = FESpace(2, 2, n)
u0 = zero(fe.xn)
N = length(fe.xn)
sol = nlsolve(u -> fe_residual(u, fe, fq; bci=[1, N], bcv=[0, 0]), zero(fe.xn), method=:newton)
plot(fe.xn, sol.zero, marker=:auto, legend=:none)
../_images/2022-10-28-fem_29_0.svg