2021-09-01 Boundaries and Fourier methods

Last time

  • High order on arbitrary grids

  • Method of manufactured solutions

  • More satisfying approach to boundary conditions

Today

  • More on boundary conditions

  • Fourier methods for analyzing finite difference methods

  • Discussion

using Plots
using LinearAlgebra

Interpolation by Vandermonde matrices

We can compute a polynomial

\[ p(x) = c_0 + c_1 x + c_2 x^2 + \dotsb \]

that assumes function values \(p(x_i) = u_i\) by solving a linear system with the Vandermonde matrix.

\[\begin{split} \underbrace{\begin{bmatrix} 1 & x_0 & x_0^2 & \dotsb \\ 1 & x_1 & x_1^2 & \dotsb \\ 1 & x_2 & x_2^2 & \dotsb \\ \vdots & & & \ddots \end{bmatrix}}_V \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} u_0 \\ u_1 \\ u_2 \\ \vdots \end{bmatrix} .\end{split}\]
function vander(x, k=nothing)
    if k === nothing
        k = length(x)
    end
    V = ones(length(x), k)
    for j = 2:k
        V[:, j] = V[:, j-1] .* x
    end
    V
end
vander (generic function with 2 methods)
cond(vander(LinRange(-1, 1, 5) .+ 1))
#cond(vander([-1,-.99,-.98,-.97, 1]))
743.2516243247674

Arbitrary order derivatives

function fdstencil(source, target, k)
    "kth derivative stencil from source to target"
    x = source .- target
    V = vander(x)
    rhs = zero(x)'
    rhs[k+1] = factorial(k)
    rhs / V
end
x = LinRange(-2, 2, 5)
u = sin.(x)
fdstencil(x, 0.5, 2)
1×5 adjoint(::Vector{Float64}) with eltype Float64:
 -0.208333  1.33333  -1.75  0.333333  0.291667
plot([z -> fdstencil(x, z, 2) * u,
        z -> -sin(z)]) 
../_images/2021-09-01-convergence-and-boundaries_8_0.svg

High order discretization of the Laplacian

The Poisson problem \(-u_{xx} = f\) with boundary conditions

function poisson(x, spoints, forcing; left=(0, zero), right=(0, zero))
    n = length(x)
    L = zeros(n, n)
    rhs = forcing.(x)
    for i in 2:n-1
        jleft = min(max(1, i-spoints÷2), n-spoints+1)
        js = jleft : jleft + spoints - 1
        L[i, js] = -fdstencil(x[js], x[i], 2)
    end
    L[1,1:spoints] = fdstencil(x[1:spoints], x[1], left[1])
    L[n,n-spoints+1:n] = fdstencil(x[n-spoints+1:n], x[n], right[1])
    rhs[1] = left[2](x[1])
    rhs[n] = right[2](x[n])
    L, rhs
end
poisson (generic function with 1 method)
L, b = poisson(LinRange(-1, 1, 6), 3, zero, left=(1, zero))
L
6×6 Matrix{Float64}:
 -3.75   5.0   -1.25   0.0           0.0           0.0
 -6.25  12.5   -6.25   0.0           0.0           0.0
  0.0   -6.25  12.5   -6.25          0.0           0.0
  0.0    0.0   -6.25  12.5          -6.25          0.0
  0.0    0.0    0.0   -6.25         12.5          -6.25
  0.0    0.0    0.0    9.25186e-18  -2.31296e-16   1.0

Method of manufactured solutions

Problem: analytic solutions to PDEs are hard to find

Let’s choose a smooth function with rich derivatives,

\[ u(x) = \tanh(x) . \]
Then
\[ u'(x) = \cosh^{-2}(x) \]
and
\[ u''(x) = -2 \tanh(x) \cosh^{-2}(x) . \]

  • This works for nonlinear too.

x = LinRange(-2, 2, 10)
L, rhs = poisson(x, 5,
    x -> 2 * tanh(x) / cosh(x)^2,
    left=(0, tanh), 
    right=(1, x -> cosh(x)^-2))
u = L \ rhs
plot(x, u, marker=:circle, legend=:topleft)
plot!(tanh)
../_images/2021-09-01-convergence-and-boundaries_14_0.svg

Convergence rate

ns = 2 .^ (3:10)
hs = 1 ./ ns
function poisson_error(n, spoints)
    x = LinRange(-2, 2, n)
    L, rhs = poisson(x, spoints, x -> 2 * tanh(x) / cosh(x)^2,
        left = (0, tanh),
        right = (1, x -> cosh(x)^-2))
    u = L \ rhs
    norm(u - tanh.(x), Inf)
end
poisson_error (generic function with 1 method)
plot(hs, [poisson_error(n, 5) for n in ns], marker=:circle)
plot!(hs, [poisson_error(n, 3) for n in ns], marker=:square)
plot!([h -> h^2, h -> h^4], xscale=:log10, yscale=:log10, legend=:topleft)
../_images/2021-09-01-convergence-and-boundaries_17_0.svg

Symmetry in boundary conditions: Dirichlet

We have implemented Dirichlet conditions by modifying the first row of the matrix,

(7)\[\begin{align} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ \\ & & A_{1:,:} & & \\ \\ \end{bmatrix} \begin{bmatrix} u_0 \\ \\ u_{1:} \\ \\ \end{bmatrix} = \begin{bmatrix} a \\ \\ f_{1:} \\ \\ \end{bmatrix} . \end{align}\]
  • This matrix is not symmetric even if \(A\) is.

  • We can eliminate \(u_0\) and create a reduced system for \(u_{1:}\).

  • Generalize: consider a \(2\times 2\) block system

\[\begin{align*} \begin{bmatrix} I & 0 \\ A_{10} & A_{11} \end{bmatrix} \begin{bmatrix} u_0 \\ u_1 \end{bmatrix} = \begin{bmatrix} f_0 \\ f_1 \end{bmatrix}. \end{align*}\]

We can rearrange as

\[A_{11} u_1 = f_1 - A_{10} f_0,\]
which is symmetric if \(A_{11}\) is.

  • This is called “lifting” and is often done implicitly in the mathematics literature. It is convenient for linear solvers and eigenvalue solvers, but inconvenient for IO and postprocessing, as well as some nonlinear problems.

  • Convenient alternative: write

    \[\begin{split}\begin{bmatrix} I & 0 \\ 0 & A_{11} \end{bmatrix} \begin{bmatrix} u_0 \\ u_1 \end{bmatrix} = \begin{bmatrix} f_0 \\ f_1 - A_{10} f_0 \end{bmatrix},\end{split}\]
    which is symmetric and decouples the degrees of freedom associated with the boundary. This method applies cleanly to nonlinear problems.

  • Optionally scale the identity by some scalar related to the norm of \(A_{11}\).

Symmetry in boundary conditions: Neumann

Consider FD discretization of the Neumann boundary condition

\[ \frac{du}{dx}(1) = b . \]

  1. Use a one-sided difference formula as in

    \[ \frac{u_n - u_{n-1}}{h} = b . \]

  • an extra discretization choice

  • may reduce order of accuracy compared to interior discretization, lose symmetry.

  1. Temporarily introduce a ghost value \(u_{n+1} = u(x_{n+1} = 1 + h)\) (possibly more) and define it to be a reflection of the values from inside the domain. In the case \(b=0\), this reflection is \(u_{n+i} = u_{n-i}\). More generally,

    \[ u_{n+i} = u_{n-i} + 2b(x_n - x_{n-i}) . \]

After this definition of ghost values, we apply the interior discretization at the boundary. For our reference equation, we would write

\[ \frac{-u_{n-1} + 2 u_n - u_{n+1}}{h^2} = f(x_n) \]

which simplifies to

\[ \frac{u_n - u_{n-1}}{h^2} = f(x_n)/2 + b/h \]
after dividing by 2 and moving the boundary term to the right hand side.