2021-11-05 Galerkin methods

Last time

  • Project discussion

  • Weak forms

Today

  • Variational forms

  • Finite element definition

  • From prime to nodal bases

  • Galerkin method

using Plots
using LinearAlgebra

Integration by parts

One dimension

it’s the product rule backwards

(37)\[\begin{align} \int_a^b d(uv) &= \int_a^b u dv + \int_a^b v du \\ (uv)_a^b &= \int_a^b u dv + \int_a^b v du \\ \int_a^b u dv &= (uv)_a^b - \int_a^b v du \end{align}\]

you can move the derivative to the other term; it’ll cost you a minus sign and a boundary term

Multiple dimensions

(38)\[\begin{align} \int_\Omega v \nabla\cdot \mathbf f = -\int_\Omega \nabla v \cdot \mathbf f + \int_{\partial \Omega} v \mathbf f \cdot \mathbf n \end{align}\]

Strong form

\[ -\nabla\cdot(\kappa \nabla u) = 0 \]

Weak form

  • multiply by a test function and integrate by parts

(39)\[\begin{align} -\int_\Omega v \nabla\cdot(\kappa \nabla u) = 0, \forall v \\ \int_\Omega \nabla v \cdot \kappa \nabla u - \int_{\partial\Omega} v \underbrace{\kappa \nabla u \cdot \mathbf n}_{\text{boundary condition}} = 0 \end{align}\]

Variational: from minimization to weak forms

Minimization

Find \(u\in \mathcal V\) such that

(40)\[\begin{align} u &= \arg\min \int_\Omega \frac 1 p \lVert \nabla u \rVert^p \\ &= \arg\min \int_\Omega \frac 1 p (\nabla u \cdot \nabla u)^{p/2} \end{align}\]

Variations

If \(f(x)\) is a minimum, then \(df = f'(x) dx = 0\) for all \(dx\).

So if \(u \in \mathcal V\) is a minimizer, then

(41)\[\begin{align} \int_\Omega \underbrace{\lVert \nabla u \rVert^{p-2}}_{\kappa(u)} \nabla u \cdot \nabla du = 0 \end{align}\]

for all \(du \in \mathcal V\).

  • It’s common to use \(v\) in place of \(du\).

  • Our discretization will reflect this structure

\[ v_h^T F(u_h) \sim \int_\Omega \nabla v \cdot \kappa(u) \cdot \nabla u \]

Finite elements

Problem statement

Find \(u \in \mathcal V\) such that

(42)\[\begin{align} \int_\Omega \nabla v \cdot \kappa \nabla u - \int_{\partial\Omega} v \underbrace{\kappa \nabla u \cdot \mathbf n}_{\text{boundary condition}} = 0, \forall v \in \mathcal V \end{align}\]

What do we need?

  • A way to integrate

  • A space \(\mathcal V\)

  • Boundary conditions

Ciarlet (1978) definition

A finite element is a triple \((K, P, N)\) where

  • \(K\) is a bounded domain with piecewise smooth boundary

  • \(P = \{p_j\}_1^k\) is a finite-dimensional function space over \(K\) (“prime basis”)

  • \(N = \{n_i\}_1^k\) is a basis for the dual space (“nodes”)

It is common for nodes to be pointwise evaluation

\[ \langle n_i, p_j \rangle = p_j(x_i) \]

First: choose a single element \(K = \Omega\)

Quadrature

Our elements will be a line segment and we’ll define quadrature on the standard line segment, \(\hat K = (-1, 1)\). A quadrature is a set of points \(q_i\) and weights \(w_i\) such that

\[ \int_{-1}^1 f(x) \approx \sum_{i=1}^n w_i f(q_i) \]

default(linewidth=4)
function quad_trapezoid(n)
    q = LinRange(-1, 1, n)
    w = 2 * ones(n) / (n - 1)
    w[[1,end]] ./= 2
    q, w
end

function plot_quad_accuracy(f, F, quad)
    ns = 2 .^ (2:7)
    exact = F(1) - F(-1)
    function err(n)
        q, w = quad(n)
        w' * f.(q) - exact
    end
    errors = [abs.(err(n)) for n in ns]
    plot(ns, errors, marker=:auto, label=quad)
    plot!(ns, ns.^(-2), xscale=:log10, yscale=:log10)    
end
plot_quad_accuracy (generic function with 1 method)
plot_quad_accuracy(exp, exp, quad_trapezoid)
plot_quad_accuracy(x -> 3*x^2, x -> x^3, quad_trapezoid)
../_images/2021-11-05-galerkin_14_0.svg

Integration via polynomial interpolation

  • Pick some points \(x_i\)

  • Evaluate the function there \(f_i = f(x_i)\)

  • Find the polynomial that interpolates the data

  • Integrate the polynomial

What order of accuracy can we expect?

  • What degree polynomials can be integrate exactly?

Doing better: Gauss quadrature

Suppose a polynomial on the interval \([-1,1]\) can be written as

\[ P_n(x) q(x) + r(x) \]

where \(P_n(x)\) is the \(n\)th Legendre polnomials and both \(q(x)\) and \(r(x)\) are polynomials of maximum degree \(n-1\).

  • Why is \(\int_{-1}^1 P_n(x) q(x) = 0\)?

  • Can every polynomials of degree \(2n-1\) be written in the above form?

  • How many roots does \(P_n(x)\) have on the interval?

  • Can we choose points \(\{x_i\}\) such that the first term is 0?

If \(P_n(x_i) = 0\) for each \(x_i\), then we need only integrate \(r(x)\), which is done exactly by integrating its interpolating polynomial. How do we find these roots \(x_i\)?

Gauss-Legendre in code

  1. Solve for the points, compute the weights

  • Use a Newton solver to find the roots. You can use the recurrence to write a recurrence for the derivatives.

  • Create a Vandermonde matrix and extract the first row of the inverse or (using more structure) the derivatives at the quadrature points.

  1. Use duality of polynomial roots and matrix eigenvalues.

  • A fascinating mathematical voyage (topic of graduate linear algebra class).

function gauss_legendre(n)
    """Gauss-Legendre integration using Golub-Welsch algorithm"""
    beta = @. .5 / sqrt(1 - (2 * (1:n-1))^(-2))
    T = diagm(-1 => beta, 1 => beta)
    D, V = eigen(T)
    w = V[1,:].^2 * 2
    q = D
    q, w
end
gauss_legendre (generic function with 1 method)
plot_quad_accuracy(exp, exp, gauss_legendre)
plot_quad_accuracy(x -> 11*x^10, x -> x^11, gauss_legendre)
../_images/2021-11-05-galerkin_19_0.svg

Legendre polynomials

function vander_legendre(x, k=nothing)
    if isnothing(k)
        k = length(x) # Square by default
    end
    m = length(x)
    Q = ones(m, k)
    Q[:, 2] = x
    for n in 1:k-2
        Q[:, n+2] = ((2*n + 1) * x .* Q[:, n+1] - n * Q[:, n]) / (n + 1)
    end
    Q
end
vander_legendre (generic function with 2 methods)
x = LinRange(-1, 1, 50)
P = vander_legendre(x, 6)
plot(x, P)
../_images/2021-11-05-galerkin_22_0.svg

Prime to nodal basis

A nodal basis \(\{ \phi_j(x) \}\) is one that satisfies \( n_i(\phi_j) = \delta_{ij} . \)

We write \(\phi_j\) in the prime basis by solving with the generalized Vandermonde matrix \(V_{ij} = \langle n_i, p_j \rangle\),

\[ \phi_j(x) = \sum_k p_k(x) (V^{-1})_{k,j} . \]

k = 10
xn = LinRange(-1, 1, k)
V = vander_legendre(xn)
xx = LinRange(-1, 1, 50)
Pxx = vander_legendre(xx, k)
Pn = Pxx / V
plot(xx, Pn)
scatter!(xn, one.(xn))
../_images/2021-11-05-galerkin_24_0.svg
using FastGaussQuadrature
xn, _ = gausslobatto(k)
V = vander_legendre(xn)
Pn = Pxx / V
plot(xx, Pn)
scatter!(xn, one.(xn))
../_images/2021-11-05-galerkin_25_0.svg

Galerkin method: \(L^2\) projection

A nice test problem that doesn’t require derivatives or boundary conditions: Find \(u \in \mathcal V_h\) such that

\[ \int_{-1}^1 v(x) \big[ u(x) - f(x) \big] = 0, \quad \forall v \in \mathcal V_h\]

function febasis(P, Q)
    x, _ = gausslobatto(P)
    q, w = gausslegendre(Q)
    Pk = vander_legendre(x)
    Pq = vander_legendre(q, P)
    B = Pq / Pk
    x, q, w, B
end

function L2_galerkin(P, Q, f)
    x, q, w, B = febasis(P, Q)
    A = B' * diagm(w) * B
    rhs = B' * diagm(w) * f.(q)
    u = A \ rhs
    x, u
end
L2_galerkin (generic function with 1 method)
f(x) = tanh(5*x)
x, u = L2_galerkin(20, 20, f)
error = u - f.(x)
plot(x, u, marker=:auto, legend=:bottomright)
plot!(f, title="Galerkin error: $(norm(error))")
../_images/2021-11-05-galerkin_28_0.svg

Convergence of the Galerkin method

ns = 2 .^ (2:8)
function L2_error(n)
    x, u = L2_galerkin(n, n, f)
    norm(u - f.(x))
end
plot(ns, L2_error.(ns), marker=:auto, yscale=:log10)
../_images/2021-11-05-galerkin_30_0.svg