2021-09-22 Newton linearization

Last time

  • Intro to rootfinding and Newton’s method

  • Bratu problem

Today

  • p-Laplacian

  • algorithmic differentiation for matrix assembly

  • principled by-hand differentiation

using Plots
using LinearAlgebra
using SparseArrays

function vander(x, k=nothing)
    if k === nothing
        k = length(x)
    end
    V = ones(length(x), k)
    for j = 2:k
        V[:, j] = V[:, j-1] .* x
    end
    V
end

function fdstencil(source, target, k)
    "kth derivative stencil from source to target"
    x = source .- target
    V = vander(x)
    rhs = zero(x)'
    rhs[k+1] = factorial(k)
    rhs / V
end
fdstencil (generic function with 1 method)

Newton for systems of equations

Let \(\mathbf u \in \mathbb R^n\) and consider the function \(\mathbf f(\mathbf u) \in \mathbb R^n\). Then

\[ \mathbf f(\mathbf u) = \mathbf f(\mathbf u_0) + \underbrace{\mathbf f'(\mathbf u_0)}_{n\times n} \underbrace{\mathbf \delta u}_{n\times 1} + \frac 1 2 \underbrace{\mathbf f''(\mathbf u_0)}_{n\times n \times n} {(\delta \mathbf u)^2}_{n\times n} + O(|\delta\mathbf u|^3).\]

We drop all but the first two terms and name the Jacobian matrix \(J(\mathbf u) = \mathbf f'(\mathbf u)\),

\[ \mathbf f(\mathbf u) \approx \mathbf f(\mathbf u_0) + J \delta \mathbf u .\]
Solving the right hand side equal to zero yields

(13)\[\begin{align} J \delta \mathbf u &= -\mathbf f(\mathbf u_k) \\ \mathbf u_{k+1} &= \mathbf u_k + \delta \mathbf u \end{align}\]

Newton in code

function newton(residual, jacobian, u0; maxits=20)
    u = u0
    uhist = [copy(u)]
    normhist = []
    for k in 1:maxits
        f = residual(u)
        push!(normhist, norm(f))
        J = jacobian(u)
        delta_u = - J \ f
        u += delta_u
        push!(uhist, copy(u))
    end
    uhist, normhist
end
newton (generic function with 1 method)
function residual(u)
    x, y = u
    [x^2 + y^2 - 1, x^2 - y]
end
function jacobian(u)
    x, y = u
    [2x 2y; 2x -1] 
end

uhist, normhist = newton(residual, jacobian, [0.1, 2])
plot(normhist, marker=:auto, yscale=:log10)
../_images/2021-09-22-nonlinear-ad_5_0.svg

Plotting the trajectory

xy = hcat(uhist...)
plot(xy[1,:], xy[2,:], marker=:auto)
circle = exp.(1im*LinRange(0, 2*pi, 50))
plot!(real(circle), imag(circle))
plot!(x -> x^2, xlims=(-2, 3), ylims=(-2, 2), axes=:equal, legend=:bottomright)
../_images/2021-09-22-nonlinear-ad_7_0.svg

Bratu problem

\[-(u_x)_x - \lambda e^{u}= 0\]
function bratu_f(u; lambda=.0)
    n = length(u)
    h = 2 / (n - 1)
    weights = -fdstencil([-h, 0, h], 0, 2)
    u = copy(u)
    f = copy(u)
    u[[1, n]] = [0, 1]
    f[n] -= 1
    for i in 2:n-1
        f[i] = weights * u[i-1:i+1] - lambda * exp(u[i])
    end
    f
end
bratu_f (generic function with 1 method)
function bratu_J(u; lambda=.0)
    n = length(u)
    h = 2 / (n - 1)
    weights = -fdstencil([-h, 0, h], 0, 2)
    rows = [1, n]
    cols = [1, n]
    vals = [1., 1.] # diagonals entries (float)
    for i in 2:n-1
        append!(rows, [i,i,i])
        append!(cols, i-1:i+1)
        append!(vals, weights + [0 -lambda*exp(u[i]) 0])
    end
    sparse(rows, cols, vals)
end
bratu_J (generic function with 1 method)

Solving Bratu

n = 20
x = collect(LinRange(-1., 1, n))
u0 = (1 .+ x)
uhist, normhist = newton(bratu_f, bratu_J, u0, maxits=5);

plot(normhist, marker=:auto, yscale=:log10)
../_images/2021-09-22-nonlinear-ad_12_0.svg
plot(x, uhist, marker=:auto)
../_images/2021-09-22-nonlinear-ad_13_0.svg

\(p\)-Laplacian

\[ -(|u_x|^{p-2} u_x)_x = 0 \]
plaplace_p = 1.5
plaplace_forcing = 0.
function plaplace_f(u)
    n = length(u)
    h = 2 / (n - 1)
    u = copy(u)
    f = copy(u)
    u[[1, n]] = [0, 1]
    f[n] -= 1
    for i in 2:n-1
        u_xstag = diff(u[i-1:i+1]) / h
        kappa_stag = abs.(u_xstag) .^ (plaplace_p - 2)
        f[i] = [1/h, -1/h]' *
            (kappa_stag .* u_xstag) - plaplace_forcing
    end
    f
end
plaplace_f (generic function with 1 method)
function plaplace_J(u)
    n = length(u)
    h = 2 / (n - 1)
    u = copy(u)
    u[[1, n]] = [0, 1]
    rows = [1, n]
    cols = [1, n]
    vals = [1., 1.] # diagonals entries (float)
    for i in 2:n-1
        js = i-1:i+1
        u_xstag = diff(u[js]) / h
        kappa_stag = abs.(u_xstag) .^ (plaplace_p - 2)
        fi = [h, -h]' * (kappa_stag .* u_xstag)
        fi_ujs = [-kappa_stag[1]/h^2,
                  sum(kappa_stag)/h^2,
                  -kappa_stag[2]/h^2]
        mask = 1 .< js .< n
        append!(rows, [i,i,i][mask])
        append!(cols, js[mask])
        append!(vals, fi_ujs[mask])
    end
    sparse(rows, cols, vals)
end
plaplace_J (generic function with 1 method)

Try solving

n = 20
x = collect(LinRange(-1., 1, n))
u0 = (1 .+ x)

plaplace_p = 1.2
plaplace_forcing = 1
uhist, normhist = newton(plaplace_f, plaplace_J, u0; maxits=20);
plot(normhist, marker=:auto, yscale=:log10, ylims=(1e-10, 1e3))
../_images/2021-09-22-nonlinear-ad_18_0.svg
plot(x, uhist[1:5:end], marker=:auto, legend=:bottomright)
../_images/2021-09-22-nonlinear-ad_19_0.svg

What’s wrong?

Using Zygote to differentiate

using Zygote

gradient(x -> x^2, 3)
WARNING: using Zygote.jacobian in module Main conflicts with an existing identifier.
(6,)
function plaplace_fpoint(u, h)
    u_xstag = diff(u) / h
    kappa_stag = abs.(u_xstag) .^ (plaplace_p - 2)
    [1/h, -1/h]' * (kappa_stag .* u_xstag)
end

gradient(u -> plaplace_fpoint(u, .1), [0., .7, 1.])
([-54.208873072038486, 118.42819801285694, -64.21932494081845],)

p-Laplacian with Zygote

function plaplace_fzygote(u)
    n = length(u)
    h = 2 / (n - 1)
    u = copy(u)
    f = copy(u)
    u[[1, n]] = [0, 1]
    f[n] -= 1
    for i in 2:n-1
        f[i] = plaplace_fpoint(u[i-1:i+1], h) - plaplace_forcing
    end
    f
end
plaplace_fzygote (generic function with 1 method)
function plaplace_Jzygote(u)
    n = length(u)
    h = 2 / (n - 1)
    u = copy(u)
    u[[1, n]] = [0, 1]
    rows = [1, n]
    cols = [1, n]
    vals = [1., 1.] # diagonals entries (float)
    for i in 2:n-1
        js = i-1:i+1
        fi_ujs = gradient(ujs -> plaplace_fpoint(ujs, h), u[js])[1]
        mask = 1 .< js .< n
        append!(rows, [i,i,i][mask])
        append!(cols, js[mask])
        append!(vals, fi_ujs[mask])
    end
    sparse(rows, cols, vals)
end
plaplace_Jzygote (generic function with 1 method)

Test it out

plaplace_p = 1.8
plaplace_forcing = .1
uhist, normhist = newton(plaplace_fzygote, plaplace_Jzygote, u0; maxits=20);
plot(normhist, marker=:auto, yscale=:log10)
../_images/2021-09-22-nonlinear-ad_28_0.svg
plot(x, uhist, marker=:auto, legend=:topleft)
../_images/2021-09-22-nonlinear-ad_29_0.svg
  • Can you fix the plaplace_J to differentiate correctly (analytically)?

  • What is causing Newton to diverge?

  • How might we fix or work around it?

A model problem

k = 1.1
fk(x) = tanh.(k*x)
Jk(x) = reshape(k / cosh.(k*x).^2, 1, 1)
xhist, normhist = newton(fk, Jk, [1.], maxits=10)
plot(xhist, fk.(xhist), marker=:auto, legend=:bottomright)
plot!(fk, xlims=(-2, 2))
../_images/2021-09-22-nonlinear-ad_32_0.svg

What about symbolic differentiation?

import Symbolics: Differential, expand_derivatives, @variables
@variables x
Dx = Differential(x)
y = tanh(k*x)
Dx(y)
\[\begin{equation} \frac{dtanh(1.1x)}{dx} \end{equation}\]
expand_derivatives(Dx(y))
\[\begin{equation} 1.1 - 1.1 \tanh^{2}\left( 1.1 x \right) \end{equation}\]

Cool, what about products?

y = x
for _ in 1:2
    y = cos(y^pi) * log(y)
end
expand_derivatives(Dx(y))
\[\begin{equation} \frac{\left( \frac{\cos\left( x^{\pi} \right)}{x} - 3.141592653589793 x^{2.141592653589793} \log\left( x \right) \sin\left( x^{\pi} \right) \right) \cos\left( \cos^{3.141592653589793}\left( x^{\pi} \right) \left( \log\left( x \right) \right)^{3.141592653589793} \right)}{\cos\left( x^{\pi} \right) \log\left( x \right)} - \left( \frac{3.141592653589793 \cos^{3.141592653589793}\left( x^{\pi} \right) \left( \log\left( x \right) \right)^{2.141592653589793}}{x} - 9.869604401089358 \cos^{2.141592653589793}\left( x^{\pi} \right) \left( \log\left( x \right) \right)^{3.141592653589793} x^{2.141592653589793} \sin\left( x^{\pi} \right) \right) \sin\left( \cos^{3.141592653589793}\left( x^{\pi} \right) \left( \log\left( x \right) \right)^{3.141592653589793} \right) \log\left( \log\left( x \right) \cos\left( x^{\pi} \right) \right) \end{equation}\]
  • The size of these expressions can grow exponentially.

Hand coding derivatives: it’s all chain rule and associativity

\[ df = f'(x) dx \]
function f(x)
    y = x
    for _ in 1:2
        a = y^pi
        b = cos(a)
        c = log(y)
        y = b * c
    end
    y
end

f(1.9), gradient(f, 1.9)
(-1.5346823414986814, (-34.03241959914049,))
function df(x, dx)
    y = x
    dy = dx
    for _ in 1:2
        a = y^pi
        da = pi * y^(pi-1) * dy
        b = cos(a)
        db = -sin(a) * da
        c = log(y)
        dc = 1/y * dy
        y = b * c
        dy = db * c + b * dc
    end
    dy
end

df(1.9, 1)
-34.03241959914048

We can go the other way

We can differentiate a composition \(h(g(f(x)))\) as

(14)\[\begin{align} \operatorname{d} h &= h' \operatorname{d} g \\ \operatorname{d} g &= g' \operatorname{d} f \\ \operatorname{d} f &= f' \operatorname{d} x. \end{align}\]

What we’ve done above is called “forward mode”, and amounts to placing the parentheses in the chain rule like

\[ \operatorname d h = \frac{dh}{dg} \left(\frac{dg}{df} \left(\frac{df}{dx} \operatorname d x \right) \right) .\]

The expression means the same thing if we rearrange the parentheses,

\[ \operatorname d h = \left( \left( \left( \frac{dh}{dg} \right) \frac{dg}{df} \right) \frac{df}{dx} \right) \operatorname d x \]

which we can compute with in reverse order via

\[ \underbrace{\bar x}_{\frac{dh}{dx}} = \underbrace{\bar g \frac{dg}{df}}_{\bar f} \frac{df}{dx} .\]

A reverse mode example

\[ \underbrace{\bar x}_{\frac{dh}{dx}} = \underbrace{\bar g \frac{dg}{df}}_{\bar f} \frac{df}{dx} .\]
function g(x)
    a = x^pi
    b = cos(a)
    c = log(x)
    y = b * c
    y
end
(g(1.4), gradient(g, 1.4))
(-0.32484122107701546, (-1.2559761698835525,))
function gback(x, y_)
    a = x^pi
    b = cos(a)
    c = log(x)
    y = b * c
    # backward pass
    c_ = y_ * b 
    b_ = c * y_
    a_ = -sin(a) * b_
    x_ = 1/x * c_ + pi * x^(pi-1) * a_
    x_
end
gback(1.4, 1)
-1.2559761698835525

Kinds of algorithmic differentation

  • Source transformation: Fortran code in, Fortran code out

    • Duplicates compiler features, usually incomplete language coverage

    • Produces efficient code

  • Operator overloading: C++ types

    • Hard to vectorize

    • Loops are effectively unrolled/inefficient

  • Just-in-time compilation: tightly coupled with compiler

    • JIT lag

    • Needs dynamic language features (JAX) or tight integration with compiler (Zygote, Enzyme)

    • Some sharp bits

How does Zygote work?

h1(x) = x^3 + 3*x
h2(x) = ((x * x)  + 3) * x
@code_llvm h1(4.)
;  @ In[150]:1 within `h1'
define double @julia_h1_15841(double %0) {
top:
; ┌ @ intfuncs.jl:314 within `literal_pow'
; │┌ @ operators.jl:560 within `*' @ float.jl:332
    %1 = fmul double %0, %0
    %2 = fmul double %1, %0
; └└
; ┌ @ promotion.jl:322 within `*' @ float.jl:332
   %3 = fmul double %0, 3.000000e+00
; └
; ┌ @ float.jl:326 within `+'
   %4 = fadd double %3, %2
; └
  ret double %4
}
@code_llvm gradient(h1, 4.)
;  @ /home/jed/.julia/packages/Zygote/nsu1Y/src/compiler/interface.jl:74 within `gradient'
define [1 x double] @julia_gradient_15844(double %0) {
top:
;  @ /home/jed/.julia/packages/Zygote/nsu1Y/src/compiler/interface.jl:76 within `gradient'
; ┌ @ /home/jed/.julia/packages/Zygote/nsu1Y/src/compiler/interface.jl:41 within `#50'
; │┌ @ In[150]:1 within `Pullback'
; ││┌ @ /home/jed/.julia/packages/ZygoteRules/OjfTt/src/adjoint.jl:59 within `#1849#back'
; │││┌ @ /home/jed/.julia/packages/Zygote/nsu1Y/src/lib/number.jl:6 within `#249'
; ││││┌ @ intfuncs.jl:313 within `literal_pow'
; │││││┌ @ float.jl:332 within `*'
        %1 = fmul double %0, %0
; ││││└└
; ││││┌ @ promotion.jl:322 within `*' @ float.jl:332
       %2 = fmul double %1, 3.000000e+00
; │└└└└
; │┌ @ /home/jed/.julia/packages/Zygote/nsu1Y/src/lib/lib.jl:17 within `accum'
; ││┌ @ float.jl:326 within `+'
     %3 = fadd double %2, 3.000000e+00
; └└└
  %.fca.0.insert = insertvalue [1 x double] undef, double %3, 0
  ret [1 x double] %.fca.0.insert
}

Forward or reverse?

It all depends on the shape.

\[ \operatorname d h = \frac{dh}{dg} \left(\frac{dg}{df} \left(\frac{df}{dx} \operatorname d x \right) \right) .\]
\[ \operatorname d h = \left( \left( \left( \frac{dh}{dg} \right) \frac{dg}{df} \right) \frac{df}{dx} \right) \operatorname d x \]
  • One input, many outputs: use forward mode

    • “One input” can be looking in one direction

  • Many inputs, one output: use reverse mode

    • Will need to traverse execution backwards (“tape”)

    • Hierarchical checkpointing

  • About square? Forward is usually a bit more efficient.