2023-09-15 Advection#
Last time#
Variable coefficients
Conservative/divergence form vs non-divergence forms
Verification with discontinuities
Today#
Advection and boundary layers
The (cell) Péclet number and oscillations
Godunov’s Theorem
using Plots
default(linewidth=3)
using LinearAlgebra
function vander(x, k=nothing)
if k === nothing
k = length(x)
end
V = ones(length(x), k)
for j = 2:k
V[:, j] = V[:, j-1] .* x
end
V
end
function fdstencil(source, target, k)
"kth derivative stencil from source to target"
x = source .- target
V = vander(x)
rhs = zero(x)'
rhs[k+1] = factorial(k)
rhs / V
end
function my_spy(A)
cmax = norm(vec(A), Inf)
s = max(1, ceil(120 / size(A, 1)))
spy(A, marker=(:square, s), c=:diverging_rainbow_bgymr_45_85_c67_n256, clims=(-cmax, cmax))
end
function poisson_nondivergence(n, kappa, forcing; leftbc=(0, zero), rightbc=(0, zero), spoints=3)
x = LinRange(-1, 1, n)
L = zeros(n, n)
rhs = forcing.(x)
kappax = kappa.(x)
for i in 2:n-1
jleft = min(max(1, i-spoints÷2), n-spoints+1)
js = jleft : jleft + spoints - 1
kappa_x = fdstencil(x[js], x[i], 1) * kappax[js]
L[i, js] = -fdstencil(x[js], x[i], 2) .* kappax[i] - fdstencil(x[js], x[i], 1) * kappa_x
end
L[1,1:spoints] = fdstencil(x[1:spoints], x[1], leftbc[1])
if leftbc[1] == 1
L[1, :] *= kappax[1]
end
L[n,n-spoints+1:n] = fdstencil(x[n-spoints+1:n], x[n], rightbc[1])
if rightbc[1] == 1
L[n, :] *= kappax[n]
end
rhs[1] = leftbc[2](x[1])
rhs[n] = rightbc[2](x[n])
x, L, rhs
end
function poisson_conservative(n, kappa, forcing; leftbc=(0, zero), rightbc=(0, zero))
x = LinRange(-1, 1, n)
xstag = (x[1:end-1] + x[2:end]) / 2
L = zeros(n, n)
rhs = forcing.(x)
kappa_stag = kappa.(xstag)
for i in 2:n-1
flux_L = kappa_stag[i-1] * fdstencil(x[i-1:i], xstag[i-1], 1)
flux_R = kappa_stag[i] * fdstencil(x[i:i+1], xstag[i], 1)
js = i-1:i+1
weights = -fdstencil(xstag[i-1:i], x[i], 1)
L[i, i-1:i+1] = weights[1] * [flux_L..., 0] + weights[2] * [0, flux_R...]
end
if leftbc[1] == 0
L[1, 1] = 1
rhs[1] = leftbc[2](x[1])
rhs[2:end] -= L[2:end, 1] * rhs[1]
L[2:end, 1] .= 0
end
if rightbc[1] == 0
L[end,end] = 1
rhs[end] = rightbc[2](x[end])
rhs[1:end-1] -= L[1:end-1,end] * rhs[end]
L[1:end-1,end] .= 0
end
x, L, rhs
end
CosRange(a, b, n) = (a + b)/2 .+ (b - a)/2 * cos.(LinRange(-pi, 0, n))
function vander_chebyshev(x, n=nothing)
if isnothing(n)
n = length(x) # Square by default
end
m = length(x)
T = ones(m, n)
if n > 1
T[:, 2] = x
end
for k in 3:n
T[:, k] = 2 * x .* T[:,k-1] - T[:, k-2]
end
T
end
function chebdiff(x, n=nothing)
T = vander_chebyshev(x, n)
m, n = size(T)
dT = zero(T)
dT[:,2:3] = [one.(x) 4*x]
for j in 3:n-1
dT[:,j+1] = j * (2 * T[:,j] + dT[:,j-1] / (j-2))
end
ddT = zero(T)
ddT[:,3] .= 4
for j in 3:n-1
ddT[:,j+1] = j * (2 * dT[:,j] + ddT[:,j-1] / (j-2))
end
T, dT, ddT
end
function my_spy(A)
cmax = norm(vec(A), Inf)
s = max(1, ceil(120 / size(A, 1)))
spy(A, marker=(:square, s), c=:diverging_rainbow_bgymr_45_85_c67_n256, clims=(-cmax, cmax))
end
my_spy (generic function with 1 method)
Solving with the smoothed step \(\kappa\)#
manufactured(x) = tanh(2x)
d_manufactured(x) = 2*cosh(2x)^-2
mdd_manufactured(x) = 8 * tanh(2x) / cosh(2x)^2
kappa_tanh(x, epsilon=.02)= .55 + .45 * tanh(x / epsilon)
d_kappa_tanh(x, epsilon=.02) = .45/epsilon * cosh(x/epsilon)^-2
flux_manufactured_kappa_tanh(x) = kappa_tanh(x) * d_manufactured(x)
function forcing_manufactured_kappa_tanh(x)
8 * tanh(2x) / cosh(2x)^2 * kappa_tanh(x) -
d_kappa_tanh(x) * d_manufactured(x)
end
x, L, rhs = poisson_conservative(30, kappa_tanh,
forcing_manufactured_kappa_tanh,
leftbc=(0, manufactured), rightbc=(0, manufactured));
u = L \ rhs
plot(x, u, marker=:circle, legend=:bottomright, title="Error $(norm(u - manufactured.(x), Inf))")
plot!([manufactured flux_manufactured_kappa_tanh forcing_manufactured_kappa_tanh kappa_tanh],
label=["u_manufactured" "flux" "forcing" "kappa"], ylim=(-3, 3))
MMS Convergence: nondivergence vs conservative#
function poisson_error(n, spoints=3)
x, L, rhs = poisson_conservative(n, kappa_tanh,
forcing_manufactured_kappa_tanh,
leftbc=(0, manufactured), rightbc=(0, manufactured))
u = L \ rhs
norm(u - manufactured.(x), Inf)
end
ns = 2 .^ (3:10)
plot(ns, poisson_error.(ns, 3), marker=:auto, xscale=:log10, yscale=:log10)
plot!(n -> n^-2, label="\$1/n^2\$")
Outlook#
Manufactured solutions can be misleading for verification in the presence of rapid coefficient variation.
Forcing terms may be poorly resolved on the grid
Non-conservative methods are scary
Can look great during verification on smooth problems, then break catastrophically
Conservative methods are generally robust, but now we have choices to make
What if \(\kappa(x)\) is gridded data? How do we evaluate at staggered points?
What does this mean for boundary conditions, \(\kappa u_x = g\)
What do staggered points mean on unstructured/adaptive meshes?
Which terms should we evaluate where?
Advection#
Advection represents transport in a “wind” \(w\). The time-dependent model is
u0(x) = @. tanh(2*x)
usolution(t,x; w=1) = @. u0(x - t*w)
x = LinRange(-1, 1, 50)
plot(x, [usolution(t, x) for t in 0:.2:2], legend=:none)
What boundary conditions can be specified on the steady-state (\(t\to\infty\)) problem?#
What is the steady state solution?#
Advection-diffusion with Chebyshev#
function advdiff_cheb(n, wind, rhsfunc, leftbc=(0, zero), rightbc=(0, zero))
x = CosRange(-1, 1, n)
T, dT, ddT = chebdiff(x)
dT /= T
ddT /= T
T /= T
L = -ddT + wind * dT
rhs = rhsfunc.(x)
for (index, deriv, func) in
[(1, leftbc...), (n, rightbc...)]
L[index,:] = (T, dT)[deriv+1][index,:]
rhs[index] = func(x[index])
end
x, L, rhs
end
advdiff_cheb (generic function with 3 methods)
wind = 200
x, L, rhs = advdiff_cheb(40, wind, one)
@show minimum(diff(x))
plot(x, L \ rhs, legend=:none, marker=:auto)
minimum(diff(x)) = 0.0032426918657900705
Advection-diffusion with conservative FD#
function advdiff_conservative(n, kappa, wind, forcing)
x = LinRange(-1, 1, n)
xstag = (x[1:end-1] + x[2:end]) / 2
L = zeros(n, n)
rhs = forcing.(x)
kappa_stag = kappa.(xstag)
for i in 2:n-1
flux_L = -kappa_stag[i-1] * fdstencil(x[i-1:i], xstag[i-1], 1) + wind * [.5 .5]
flux_R = -kappa_stag[i] * fdstencil(x[i:i+1], xstag[i], 1) + wind * [.5 .5]
js = i-1:i+1
weights = fdstencil(xstag[i-1:i], x[i], 1)
L[i, i-1:i+1] = weights[1] * [flux_L..., 0] + weights[2] * [0, flux_R...]
end
L[1, 1] = 1
rhs[1] = 0
L[2:end, 1] .= 0
L[end,end] = 1
rhs[end] = 0
L[1:end-1,end] .= 0
x, L, rhs
end
advdiff_conservative (generic function with 1 method)
Experiments, The (cell) Péclet number#
n = 60; h = 2/n
kappa = 1
wind = 8000
x, L, rhs = advdiff_conservative(n, x -> kappa, wind, one)
@show minimum(diff(x))
plot(x, L \ rhs, marker=:auto, legend=:none, title="\$Pe_h = $(wind*h/kappa)\$")
minimum(diff(x)) = 0.03389830508474567
Upwinded discretization#
Idea: incoming advective flux should depend only on upwind value, outgoing should depend only on my value.
function advdiff_upwind(n, kappa, wind, forcing)
x = LinRange(-1, 1, n)
xstag = (x[1:end-1] + x[2:end]) / 2
L = zeros(n, n)
rhs = forcing.(x)
kappa_stag = kappa.(xstag)
for i in 2:n-1
flux_L = -kappa_stag[i-1] * fdstencil(x[i-1:i], xstag[i-1], 1) +
wind * (wind > 0 ? [1 0] : [0 1])
flux_R = -kappa_stag[i] * fdstencil(x[i:i+1], xstag[i], 1) +
wind * (wind > 0 ? [1 0] : [0 1])
js = i-1:i+1
weights = fdstencil(xstag[i-1:i], x[i], 1)
L[i, i-1:i+1] = weights[1] * [flux_L..., 0] + weights[2] * [0, flux_R...]
end
L[1, 1] = 1
rhs[1] = 0
L[2:end, 1] .= 0
L[end,end] = 1
rhs[end] = 0
L[1:end-1,end] .= 0
x, L, rhs
end
advdiff_upwind (generic function with 1 method)
Try it for robustness#
n = 30; h = 2/n
kappa = 1
wind = 100000
x, L, rhs = advdiff_upwind(n, x -> kappa, wind, one)
@show minimum(diff(x))
plot(x, L \ rhs, marker=:auto, legend=:none, title="\$Pe_h = $(wind*h/kappa)\$")
minimum(diff(x)) = 0.06896551724137923
What is the order of accuracy of the upwinded discretization?#
Godunov’s Theorem (1954)#
Linear numerical methods
For our purposes, monotonicity is equivalent to positivity preservation,
Discontinuities#
A numerical method for representing a discontinuous function on a stationary grid can be no better than first order accurate in the \(L^1\) norm,
In light of these two observations, we may still ask for numerical methods that are more than first order accurate for smooth solutions, but those methods must be nonlinear.
Next week#
Sparse linear algebra (necessary for more than 1 spatial dimension)
Nonlinear solvers
Time integration for stiff and non-stiff systems