2023-10-02 Stiffness#

Last time#

  • Stability diagrams

  • Energy dissipation

  • Exploring the \(\theta\) method

  • PDE as ODE

Today#

  • Advection-diffusion

  • \(A\)- and \(L\)-stability

  • Spatial, temporal, and physical dissipation

  • Stiffness

using Plots
default(linewidth=3)
using LinearAlgebra
using SparseArrays

function plot_stability(Rz, title; xlims=(-3, 3), ylims=(-2, 2))
    x = LinRange(xlims[1], xlims[2], 100)
    y = LinRange(ylims[1], ylims[2], 100)
    heatmap(x, y, (x, y) -> abs(Rz(x + 1im*y)), c=:bwr, clims=(0, 2), aspect_ratio=:equal, title=title)
end

function ode_theta_linear(A, u0; forcing=zero, tfinal=1, h=0.1, theta=.5)
    u = copy(u0)
    t = 0.
    thist = [t]
    uhist = [u0]
    while t < tfinal
        tnext = min(t+h, tfinal)
        h = tnext - t
        rhs = (I + h*(1-theta)*A) * u .+ h*forcing(t+h*theta)
        u = (I - h*theta*A) \ rhs
        t = tnext
        push!(thist, t)
        push!(uhist, u)
    end
    thist, hcat(uhist...)
end

Rz_theta(z, theta) = (1 + (1 - theta)*z) / (1 - theta*z)
Rz_theta (generic function with 1 method)

Advection as linear ODE#

function advect_matrix(n; upwind=false)
    dx = 2 / n
    rows = [1]
    cols = [1]
    vals = [0.]
    wrap(j) = (j + n - 1) % n + 1
    for i in 1:n
        append!(rows, [i, i])
        if upwind
            append!(cols, wrap.([i-1, i]))
            append!(vals, [1., -1] ./ dx)
        else
            append!(cols, wrap.([i-1, i+1]))
            append!(vals, [1., -1] ./ 2dx)
        end
    end
    sparse(rows, cols, vals)
end
eigvals(Matrix(advect_matrix(10)))
10-element Vector{ComplexF64}:
 -7.703719777548943e-34 - 4.755282581475769im
 -7.703719777548943e-34 + 4.755282581475769im
                    0.0 - 2.938926261462368im
                    0.0 - 2.9389262614623664im
                    0.0 - 1.2560848302247556e-16im
                    0.0 + 1.2560848302247556e-16im
                    0.0 + 2.9389262614623664im
                    0.0 + 2.938926261462368im
 2.0421828815638542e-88 - 4.7552825814757655im
 2.0421828815638542e-88 + 4.7552825814757655im
n = 50
A = advect_matrix(n, upwind=false)
x = LinRange(-1, 1, n+1)[1:end-1]
u0 = exp.(-9 * x .^ 2)
@time thist, uhist = ode_theta_linear(A, u0, h=.04, theta=0.5, tfinal=1.);
nsteps = size(uhist, 2)
plot(x, uhist[:, 1:(nsteps÷8):end])
  1.566686 seconds (2.61 M allocations: 176.747 MiB, 4.28% gc time, 99.91% compilation time)

Heat equation as linear ODE#

  • How do different \(\theta \in [0, 1]\) compare in terms of stability?

  • Are there artifacts even when the solution is stable?

function heat_matrix(n)
    dx = 2 / n
    rows = [1]
    cols = [1]
    vals = [0.]
    wrap(j) = (j + n - 1) % n + 1
    for i in 1:n
        append!(rows, [i, i, i])
        append!(cols, wrap.([i-1, i, i+1]))
        append!(vals, [1, -2, 1] ./ dx^2)
    end
    sparse(rows, cols, vals)
end
eigvals(Matrix(heat_matrix(8)))
8-element Vector{Float64}:
 -64.0
 -54.62741699796952
 -54.6274169979695
 -31.999999999999996
 -31.99999999999998
  -9.372583002030481
  -9.37258300203047
   1.4210854715202004e-14
n = 100
A = heat_matrix(n)
x = LinRange(-1, 1, n+1)[1:end-1]
u0 = exp.(-200 * x .^ 2)
@time thist, uhist = ode_theta_linear(A, u0, h=.005, theta=.5, tfinal=.1);
nsteps = size(uhist, 2)
plot(x, uhist[:, 1:5])
  0.084731 seconds (77.89 k allocations: 6.504 MiB, 98.39% compilation time)

Stability classes and the \(\theta\) method#

Definition: \(A\)-stability#

A method is \(A\)-stable if the stability region

\[ \{ z : |R(z)| \le 1 \} \]
contains the entire left half plane
\[ \Re[z] \le 0 .\]
This means that the method can take arbitrarily large time steps without becoming unstable (diverging) for any problem that is indeed physically stable.

Definition: \(L\)-stability#

A time integrator with stability function \(R(z)\) is \(L\)-stable if

\[ \lim_{z\to\infty} R(z) = 0 .\]
For the \(\theta\) method, we have
\[ \lim_{z\to \infty} \frac{1 + (1-\theta)z}{1 - \theta z} = \frac{1-\theta}{\theta} . \]
Evidently only \(\theta=1\) is \(L\)-stable.

Spectrum of operators#

theta=0.5
h = .05
plot_stability(z -> Rz_theta(z, theta), "\$\\theta=$theta, h=$h\$")
ev = eigvals(Matrix(h*advect_matrix(80, upwind=false)))
scatter!(real(ev), imag(ev))
theta=0
h = .001
plot_stability(z -> Rz_theta(z, theta), "\$\\theta=$theta, h=$h\$")
ev = eigvals(Matrix(h*heat_matrix(40)))
scatter!(real(ev), imag(ev))

Advection-diffusion as linear ODE#

(17)#\[\begin{align} (-\kappa u_x + w u)_x &= 0 & Pe_L &= \frac{L \lvert w \rvert}{\kappa} \end{align}\]
function advdiff_matrix(n; kappa=1, wind=1, upwind=0.)
    dx = 2 / n
    rows = [1]
    cols = [1]
    vals = [0.]
    wrap(j) = (j + n - 1) % n + 1
    for i in 1:n
        append!(rows, [i, i, i])
        append!(cols, wrap.(i-1:i+1))
        diffuse = [-1, 2, -1] * kappa / dx^2
        advect_upwind = [-1, 1, 0] * wind / dx
        advect_center = [-1, 0, 1] * wind / 2dx
        stencil = -diffuse - upwind * advect_upwind - (1 - upwind) * advect_center
        append!(vals, stencil)
    end
    sparse(rows, cols, vals)
end
advdiff_matrix(5, kappa=.1)
5×5 SparseMatrixCSC{Float64, Int64} with 15 stored entries:
 -1.25   -0.625    ⋅       ⋅      1.875
  1.875  -1.25   -0.625    ⋅       ⋅ 
   ⋅      1.875  -1.25   -0.625    ⋅ 
   ⋅       ⋅      1.875  -1.25   -0.625
 -0.625    ⋅       ⋅      1.875  -1.25
n = 50
A = advdiff_matrix(n, kappa=0, upwind=0)
x = LinRange(-1, 1, n+1)[1:end-1]
u0 = exp.(-16 * x .^ 2)
thist, uhist = ode_theta_linear(A, u0, h=.04, theta=1)
plot(x, uhist[:, 1:5])

Explain the mechanism and obstacles to fixing#

A = advdiff_matrix(50, kappa=.02, upwind=0)
thist, uhist = ode_theta_linear(A, u0, h=.04, theta=.5, tfinal=1.);
plot(x, uhist[:, 1:5])
A = advdiff_matrix(50, kappa=0, upwind=0)
thist, uhist = ode_theta_linear(A, u0, h=.04, theta=1, tfinal=1.)
plot(x, uhist[:, 1:5])

Explain the mechanism#

A = advdiff_matrix(50, kappa=.02, upwind=0)
thist, uhist = ode_theta_linear(A, u0, h=.04, theta=.5, tfinal=1.);
plot(x, uhist[:, 1:5])
n = 50
A = advdiff_matrix(n, kappa=0, upwind=0)
x = LinRange(-1, 1, n)
u0 = exp.(-16 * x .^ 2)
thist, uhist = ode_theta_linear(A, u0, h=.04, theta=1, tfinal=1.)
plot(x, uhist[:, 1:20])

Stability limits: CFL principle for advection#

A stable method must be capable of propagating information at least as fast as the continuous system it discretizes.

  • Courant, Friedrichs, Levy (1928)

  • Discrete information moves at most \(\Delta x\) in time \(\Delta t\) (with explicit integrator)

  • Physical information moves distance \(|w| \Delta t\)

  • “CFL number” or “Courant number”

    \[ \textrm{CFL} = \frac{\Delta t |w|}{\Delta x} \le 1 \]

  • What does this mean for implicit methods?

theta=0
n = 20
dx = 2 / n
cfl = .5
h = cfl * dx / 1

plot_stability(z -> Rz_theta(z, theta), "\$\\theta=$theta, h=$h, \\mathrm{CFL}=$cfl\$")
ev = eigvals(Matrix(h*advdiff_matrix(n, kappa=0, upwind=1)))
scatter!(real(ev), imag(ev))

Stability limits: explicit diffusion#

  • The diffusion operator has stencil

    \[ \frac{\kappa}{(\Delta x)^2} \begin{bmatrix} 1 & -2 & 1 \end{bmatrix} \]

  • Apply this to test function \(e^{i\theta x}\) to get the symbol

(18)#\[\begin{align} L_{\Delta x} e^{i\theta x} &= \frac{\kappa}{(\Delta x)^2} \Big[ e^{-i\theta\Delta x} - 2 + e^{i\theta\Delta x} \Big] e^{i\theta x} \\ &= \frac{2\kappa}{(\Delta x)^2} \underbrace{\Big[ \cos (\theta \Delta x) - 1 \Big]}_{\min = -2} e^{i\theta x} \end{align}\]
  • Conclude \(\frac{-4 \kappa}{(\Delta x)^2} \le \lambda \le 0\), need \(-2 \le h\lambda \le 0\) for Euler

theta=0
n = 20
dx = 2 / n
kappa = 1
lambda_min = -4 * kappa / dx^2
h = -2 / lambda_min

plot_stability(z -> Rz_theta(z, theta), "\$\\theta=$theta, h=$h\$")
ev = eigvals(Matrix(h*advdiff_matrix(n, kappa=kappa, wind=0)))
scatter!(real(ev), imag(ev))

Stiffness#

Stiff equations are problems for which explicit methods don’t work. (Hairer and Wanner, 2002)

  • “stiff” dates to Curtiss and Hirschfelder (1952)

k = 5
thist, uhist = ode_theta_linear(-k, [.2], forcing=t -> k*cos(t), tfinal=5, h=.5, theta=1)
scatter(thist, uhist[1,:])
plot!(cos)
function mms_error(h; theta=.5, k=10)
    u0 = [.2]
    thist, uhist = ode_theta_linear(-k, u0, forcing=t -> k*cos(t), tfinal=3, h=h, theta=theta)
    T = thist[end]
    u_exact = (u0 .- k^2/(k^2+1)) * exp(-k*T) .+ k*(sin(T) + k*cos(T))/(k^2 + 1)
    uhist[1,end] .- u_exact
end
mms_error (generic function with 1 method)
hs = .5 .^ (1:8)
errors = mms_error.(hs, theta=0.5, k=1000)
plot(hs, norm.(errors), marker=:circle, xscale=:log10, yscale=:log10)
plot!(hs, hs, label="\$h\$", legend=:topleft)
plot!(hs, hs.^2, label="\$h^2\$")

Discuss: is advection-diffusion stiff?#

theta=0
n = 80
dx = 2 / n
kappa = .05
lambda_min = -4 * kappa / dx^2
cfl = 1
h = min(-2 / lambda_min, cfl * dx)

plot_stability(z -> Rz_theta(z, theta),
    "\$\\theta=$theta, h=$h, Pe_h = $(h/kappa)\$")
ev = eigvals(Matrix(h*advdiff_matrix(n, kappa=kappa, wind=1)))
scatter!(real(ev), imag(ev))

Cost scaling#

  • Spatial discretization with error \(O((\Delta x)^p)\)

  • Time discretization with error \(O((\Delta t)^q)\)

p = 2   # spatial order of accuracy
q = 2   # temporal order of accuracy
Pe = 10 # Peclet number with wind=1
n = 2 .^ (1:10); dx = 1 ./ n

dt_accuracy(dx) = dx .^ (p/q)
dt_stability(dx) = min(dx, Pe * dx ^ 2)

plot(dx, [dt_accuracy.(dx) dt_stability.(dx)],
    label=["accuracy" "stability"], 
    xscale=:log10, yscale=:log10, legend=:bottomright,
    xlabel="\$\\Delta x\$", ylabel="\$\\Delta t\$")
function error((dx, dt))
    dt <= dt_stability(dx) ? dx ^ p + dt ^ q : 10
end
plot(n, [error.(zip(dx, dt_accuracy.(dx))) error.(zip(dx, dt_stability.(dx))) dx.^p],
    label=["accuracy" "stability" "spatial only"],
    marker=:circle, xscale=:log10, yscale=:log10,
    xlabel="number of grid points", ylabel="error")

Work-precision (error vs cost)#

p = 1
q = 2
Pe = 10
dt = [dt_accuracy.(dx) dt_stability.(dx) dt_accuracy.(dx)]
c = [n./dt[:,1] n./dt[:,2] (n.^1.5)./dt[:,3]] # O(n^1.5 solve cost)
e = [error.(zip(dx, dt[:,1])) error.(zip(dx, dt[:,2])) dx.^p+dt[:,3].^q]
plot(c, e, xscale=:log10, yscale=:log10,
  label=["explicit_accuracy" "explicit_stable" "implicit"], xlabel="cost", ylabel="error")
  • Stability can be an extreme demand for explicit methods

  • Order of accuracy matters; usually balance spatial order \(p\) and temporal order \(q\)

  • Actual cost depends heavily on solver efficiency: O(n) vs O(n^2)

  • “Constants matter”